ISSN 1004-4140
CN 11-3017/P
CHENG T X, ZHANG Y X. Orthopedic Metal Artifact Reduction Combined with Iterative Reconstruction in CT Imaging after Lumbar Internal Fixation[J]. CT Theory and Applications, 2025, 34(2): 285-293. DOI: 10.15953/j.ctta.2024.091. (in Chinese).
Citation: CHENG T X, ZHANG Y X. Orthopedic Metal Artifact Reduction Combined with Iterative Reconstruction in CT Imaging after Lumbar Internal Fixation[J]. CT Theory and Applications, 2025, 34(2): 285-293. DOI: 10.15953/j.ctta.2024.091. (in Chinese).

Orthopedic Metal Artifact Reduction Combined with Iterative Reconstruction in CT Imaging after Lumbar Internal Fixation

More Information
  • Received Date: June 15, 2024
  • Revised Date: August 12, 2024
  • Accepted Date: September 03, 2024
  • Available Online: October 29, 2024
  • Objective: Exploring the effect of metal artifact reduction (O-MAR) technology combined with iterative algorithms on the computed tomography (CT) image quality of patients after lumbar spine internal fixation surgery, to provide an accurate basis for postoperative effect evaluation. Methods: CT images were collected from 20 patients who underwent lumbar spine internal fixation surgery. Using O-MAR, filtered back projection (FBP), and iDose4 algorithms, bone (iDose4-1~7 levels) and soft tissue images (iDose4-1~6 levels) were reconstructed. Screws were displayed the best in transverse and sagittal bone reconstructed images. The screw area (center plane) of the transverse soft tissue images of the intervertebral disc was also reconstructed. Noise levels in standard deviation (SD) of bone and muscle were measured, and the artifact index (AI) was calculated. Two radiologists separately rated the metal artifact suppression and diagnostic information in the bone and soft tissue images. The subjective and objective evaluation indicators of the two groups were compared, conducting multiple comparisons between groups. Statistical analyses were further performed on subjective and objective evaluation indicators, including O-MAR comparisons and/or multiple comparisons between groups with different levels of iDose4. Results: In the bone images, the SD and AI of images using O-MAR were significantly lower than those without O-MAR, and the AI values of iDose4 images at different levels gradually decreased as the dose level increased. The subjective score of metal artifacts in O-MAR images significantly improved, and the score of iDose4-5~7 was higher than those of filtered back projection (FBP) and iDose4-1~2. With O-MAR, the diagnostic information score significantly improved. The score of iDose4-2~4 was higher than that of FBP and other iterative levels, with iDose4-3 being the best. In soft tissue images, the SD and AI of images using O-MAR were lower than those without O-MAR. The metal artifact score of images using O-MAR was higher than that of images without, but the diagnostic information score of images not using O-MAR was higher than that of images with O-MAR; For different iteration levels, regardless of whether O-MAR was used or not, no difference was observed in image artifacts and diagnostic information scores. Conclusions: We suggest combining O-MAR technology with intermediate iteration level iDose4-3 for bone image reconstruction. The use of iterative algorithms for image reconstruction using soft-tissue algorithms is not recommended. The images with and without O-MAR should be simultaneously reconstructed for comparative observations.

  • [1]
    房加高, 邹月芬, 徐海, 等. O-MAR技术在去除腰椎金属植入物伪影中的应用价值[J]. 海南医学, 2018, 29(10): 1408-1410. DOI: 10.3969/j.issn.1003-6350.2018.10.023.

    FANG J G, ZOU Y F, XU H, et al. Value of O-MAR iterative algorithm in removing metal artifacts of lumbar implants[J]. Hainan Medical Journal, 2018, 29(10): 1408-1410. DOI: 10.3969/j.issn.1003-6350.2018.10.023. (in Chinese).
    [2]
    CHOO H J, LEE S J, KIM D W, et al. Comparison of the quality of various polychromatic and monochromatic dual-energy CT images with or without a metal Artifact reduction algorithm to evaluate total knee arthroplasty[J]. Korean Journal of Radiology, 2021, 22(8): 1341-1351. DOI: 10.3348/kjr.2020.0548.
    [3]
    王平, 高玉颖, 卢再鸣, 等. 迭代重组IMR技术和iDose4技术在腹部低剂量CT扫描乏血供肝转移瘤中的图像质量[J]. 中华放射学杂志, 2015, 49(4): 283-287. DOI: 10.3760/cma.j.issn.1005-1201.2015.04.011.

    WANG P, GAO Y Y, LU Z M, et al. Iterative model reconstruction and hybrid iterative reconstruction techniques iDose4 in low-dose abdominal CT: Comparison of image quality in evaluation of hypovascular metastases of liver[J]. Chinese Journal of Radiology, 2015, 49(4): 283-287. DOI: 10.3760/cma.j.issn.1005-1201.2015.04.011. (in Chinese).
    [4]
    CHO Y J, SCHOEPF U J, SILVERMAN J R, et al. Iterative image reconstruction techniques: Cardiothoracic computed tomography applications[J]. Journal of Thoracic Imaging, 2014, 29(4): 198-208. DOI: 10.1097/RTI.0000000000000041.
    [5]
    侯阳, 于兵, 郭启勇, 等. 迭代重建对前置门控冠状动脉CT图像质量及辐射剂量的影响[J]. 中华放射学杂志, 2013, 47(4): 305-309. DOI: 10.3760/cma.j.issn.1005-1201.2013.04.004.

    HOU Y, YU B, GUO Q Y, et al. Application of iterative reconstruction in prospective electrocardiography-triggered CT coronary angiography[J]. Chinese Journal of Radiology, 2013, 47(4): 305-309. DOI: 10.3760/cma.j.issn.1005-1201.2013.04.004. (in Chinese).
    [6]
    李杰, 袁源, 王春杰, 等. 能谱CT去金属伪影(MAR)技术用于减低单髋关节置换物伪影[J]. 中国医学影像技术, 2021, 37(1): 131-135. DOI: 10.13929/j.issn.1003-3289.2021.01.032.

    LI J, YUAN Y, WANG C J, et al. Energy spectrum CT metal artifacts reduction (MAR) for reducing artifacts of unilateral hip arthroplasty[J]. Chinese Journal of Medical Imaging Technology, 2021, 37(1): 131-135. DOI: 10.13929/j.issn.1003-3289.2021.01.032. (in Chinese).
    [7]
    HU Y, PAN S, ZHAO X, et al. Value and clinical application of orthopedic metal artifact reduction algorithm in CT scans after orthopedic metal implantation[J]. Korean Journal of Radiology, 2017, 18(3): 526-535. DOI: 10.3348/kjr.2017.18.3.526.
    [8]
    GROßE H N, NEUHAUS V, ABDULLAYEV N, et al. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms[J]. Skeletal Radiology, 2018, 47(2): 195-201. DOI: 10.1007/s00256-017-2776-5.
    [9]
    刘丹丹, 崔莹, 赵波, 等. 定位像扫描参数对胸部CT影像质量和辐射剂量影响的模体研究[J]. 中华放射医学与防护杂志, 2021, 41(3): 217-221. DOI: 10.3760/cma.j.issn.0254-5098.2021.03.011.

    LIU D D, CUI Y, ZHAO B, et al. The influence of scout scanning parameters on image quality and radiation dose of chest CT: A phantom study[J]. Chinese Journal of Radiological Medicine and Protection, 2021, 41(3): 217-221. DOI: 10.3760/cma.j.issn.0254-5098.2021.03.011. (in Chinese).
    [10]
    李晓莉, 冯卫华, 董诚, 等. CT能谱成像技术减除金属植入物伪影的定量实验研究[J]. 中华放射学杂志, 2011, 45(8): 736-739. DOI: 10.3760/cma.j.issn.1005-1201.2011.08.007.

    LI X L, FENG W H, DONG C, et al. The experimental quantitative study of spectral CT imaging in reducing the metal artifacts[J]. Chinese Journal of Radiology, 2011, 45(8): 736-739. DOI: 10.3760/cma.j.issn.1005-1201.2011.08.007. (in Chinese).
    [11]
    HILGERS G, NUVER T, MINKEN A. The CT number accuracy of a novel commercial metal artifact reduction algorithm for large orthopedic implants[J]. Journal of Applied Clinical Medical Physics, 2014, 15(1): 4597. DOI: 10.1120/jacmp.v15i1.4597.
    [12]
    吴志斌, 李剑, 郑敏文, 等. O-MAR技术在减少高浓度造影剂硬化伪影中的应用价值[J]. 中国医疗设备, 2019, 34(6): 9-11. DOI: 10.3969/j.issn.1674-1633.2019.06.003.

    WU Z B, LI J, ZHENG M W, et al. Application of O-MAR technology in reducing the artifacts of high concentration contrast medium[J]. China Medical Devices, 2019, 34(6): 9-11. DOI: 10.3969/j.issn.1674-1633.2019.06.003. (in Chinese).
    [13]
    宋殿行, 郭鹏, 王玉琦, 等. O-MAR重组在减少颅内动脉瘤弹簧圈栓塞术后金属伪影的价值[J]. 临床放射学杂志, 2020, 39(3): 592-595. DOI: 10.13437/j.cnki.jcr.2020.03.037.

    SONG D X, GUO P, WANG Y Q, et al. Clinical evaluation of orthopedic metal artifact reduction (O-MAR) in reducing metallic artifacts in CT of intracranial aneurysms after endovascular coil treatment[J]. Journal of Clinical Radiology, 2020, 39(3): 592-595. DOI: 10.13437/j.cnki.jcr.2020.03.037. (in Chinese).
    [14]
    王茹, 姜彦, 徐凯, 等. iDose4与O-MAR迭代算法对TACE术后CT成像质量和疗效评估的价值[J]. 中国医学计算机成像杂志, 2016, 22(5): 457-462. DOI: 10.3969/j.issn.1006-5741.2016.05.014.

    WANG R, JIANG Y, XU K, et al. Effect of iDose4 and O-MAR iterative algorithm on imaging quality of CT scan after TACE operation[J]. Chinese Computed Medical Imaging, 2016, 22(5): 457-462. DOI: 10.3969/j.issn.1006-5741.2016.05.014. (in Chinese).
    [15]
    袁肖娜, 高知玲, 朱凯, 等. iDose迭代重建算法对上腹部CT图像质量的影响[J]. 实用放射学杂志, 2016, 32(1): 102-106. DOI: 10.3969/j.issn.1002-1671.2016.01.027.

    YUAN X N, GAO Z L, ZHU K, et al. The effect of iDose iterative reconstruction algorithm on the image quality of upper abdomen CT scan[J]. Journal of Practical Radiology, 2016, 32(1): 102-106. DOI: 10.3969/j.issn.1002-1671.2016.01.027. (in Chinese).
    [16]
    JOEMAI R M, GELEIJINS J, VELDKAMP W J. Development and validation of a low dose simulator for computed tomography[J]. European Radiology, 2010, 20(4): 958-966. DOI: 10.1007/s00330-009-1617-x.
    [17]
    NEUHAUS V, GROSSE H N, ZOPFS D, et al. Reducing artifacts from total hip replacements in dual layer detector CT: Combination of virtual monoenergetic images and orthopedic metal artifact reduction[J]. European Journal of Radiology, 2019, 111: 14-20. DOI: 10.1016/j.ejrad.2018.12.008.
    [18]
    AKDENIZ Y, YEGINGIL I, YEGINGIL Z. Effects of metal implants and a metal artifact reduction tool on calculation accuracy of AAA and acuros XB algorithms in small fields[J]. Medical Physics, 2019, 46(11): 5326-5335. DOI: 10.1002/mp.13819.
    [19]
    李杰, 孙兴文, 欧阳汉强, 等. 能谱CT去金属伪影技术减低脊柱不同类型植入物伪影的体模研究[J]. 中华放射学杂志, 2021, 55(9): 910-916. DOI: 10.3760/cma.j.cn112149-20200914-01086.

    LI J, SUN X W, OUYANG H Q, et al. The experimental phantom study of spectral CT metal artifact reduction technique in reducing the artifacts of different types of spinal implants[J]. Chinese Journal of Radiology, 2021, 55(9): 910-916. DOI: 10.3760/cma.j.cn112149-20200914-01086. (in Chinese).
    [20]
    SELLES M, KORTE J H, BOELHOUWERS H J, et al. Metal artifact reduction in computed tomography: Is it of benefit in evaluating sacroiliac joint fusion?[J]. European Journal of Radiology, 2022, 148: 110159. DOI: 10.1016/j.ejrad.2022.110159.
    [21]
    张青帝, 吴丽卓, 姜晓静, 等. 不同级别iDose4迭代重建技术在冠状动脉CT成像中的应用[J]. 中国实验诊断学, 2016, 20(5): 752-754.

    ZHANG Q D, WU L Z, JIANG X J, et al. Application of different level iDose4 iterative reconstruction technique in coronary computed tomography angiography[J]. Chinese Journal of Laboratory Diagnosis, 2016, 20(5): 752-754. (in Chinese).
    [22]
    BARRETO I, PEPIN E, DAVIS I, et al. Comparison of metal artifact reduction using single-energy CT and dual-energy CT with various metallic implants in cadavers[J]. European Journal of Radiology, 2020, 133: 109357. DOI: 10.1016/j.ejrad.2020.109357.
    [23]
    SUNWOO L, PARK S W, RHIM J H, et al. Metal artifact reduction for orthopedic implants: Brain CT angiography in patients with intracranial metallic implants[J]. Journal of Korean Medical Science, 2018, 33(21): e158. DOI: 10.3346/jkms.2018.33.e158.
  • Related Articles

    [1]SU Danyang, HOU Ping, ZHANG Haoran, MA Yuanbo, LIU Jinlong, YANG Xiaopeng. Research Progress on Reducing Metal Artifacts in CT Imaging[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.023
    [2]CHEN Zonggui, WEI Ningning, LI Zhoufan, PAN Guihong, HUANG Minjiang. Methods Research on Correction for Intracranial Metal Artifacts Based on Prior Image Utilization[J]. CT Theory and Applications, 2025, 34(1): 141-148. DOI: 10.15953/j.ctta.2024.002
    [3]ZHAO Qingqing, SUN Xiaoli, LI Xi, WANG Yanwen, LIU Weina, DUAN Yongli, WANG Rengui. Utility of Spectral CT Monochromatic Imaging with Metal Artifacts Reduction (MAR) for the Reduction of Metal Artifacts of Embolization Coil Implants[J]. CT Theory and Applications, 2019, 28(5): 529-539. DOI: 10.15953/j.1004-4140.2019.28.05.02
    [4]ZHANG Xue-song, ZHAO Bo-shan. Cupping Artifacts Calibration in CT Image Based on Radon Transform[J]. CT Theory and Applications, 2016, 25(5): 539-546. DOI: 10.15953/j.1004-4140.2016.25.05.05
    [5]LI Qing-liang, YAN Bin, SUN Hong-sheng, LI Lei, ZHANG Feng. Review of Metal Artifacts Correction Methods on X-ray Computed Tomography[J]. CT Theory and Applications, 2011, 20(1): 131-140.
    [6]GU Jian-wei, ZHANG Li, CHEN Zhi-qiang, XING Yu-xiang, GAO He-wei. The Review of Reasons and Correction Methods for Artifacts in ICT Images[J]. CT Theory and Applications, 2005, 14(3): 24-28.
    [7]WANG Xue-li. Medical CT Artifact Analysis: Reason and Correction[J]. CT Theory and Applications, 2004, 13(3): 1-8.
    [8]WANG Xue-li. Research and Discussion for CT Image Quality Evaluation[J]. CT Theory and Applications, 2003, 12(3): 46-52.
    [9]Zu Donglin, He Qiang, Luo Qingfei, Jin Zhen, Bao Shanglian. The Correction of Motion Artifact with fMRI Using Image Registration[J]. CT Theory and Applications, 2001, 10(4): 1-3.
    [10]Xu Weiqing. The Analysis of Ring Artifacts SOMATOM AR[J]. CT Theory and Applications, 2001, 10(1): 36-40.

Catalog

    Article views (89) PDF downloads (28) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return