Citation: | DAI Zhi-li, CHEN Hao, LI Ming. The Research of the Performance of the Detector Materials in the CT System Based on MCNP[J]. CT Theory and Applications, 2011, 20(1): 63-71. |
[1] | WANG Lin, QU Gangrong. The Numerical Solution of the Radon Transform Along the Circular Curve[J]. CT Theory and Applications, 2020, 29(3): 329-336. DOI: 10.15953/j.1004-4140.2020.29.03.09 |
[2] | HE Tian, SHAN Tianshu, KONG Dehui, WANG Yakun, WANG Chengyong, WU Faen, CHEN Licheng. Algebraic Reconstruction Method Physical Model Ultrasonic Image Reconstruction[J]. CT Theory and Applications, 2019, 28(3): 311-321. DOI: 10.15953/j.1004-4140.2019.28.03.04 |
[3] | CHEN Xuananga, ZHANG Shia, LI Zhiyonga, WU Dib, WANG Chengyonga, WU Faena, CHEN Lichenga. Algebraic Reconstruction and Structure Recognition for Ultrasound CT Image on Physical Model[J]. CT Theory and Applications, 2019, 28(2): 195-204. DOI: 10.15953/j.1004-4140.2019.28.02.05 |
[4] | GONG Shu, REN Qin-qin, WANG Min-ling. Application of Parabolic Radon Transform in the Suppression of Multiple Seismic Wave[J]. CT Theory and Applications, 2017, 26(2): 165-176. DOI: 10.15953/j.1004-4140.2017.26.02.05 |
[5] | ZHANG Xue-song, ZHAO Bo-shan. Cupping Artifacts Calibration in CT Image Based on Radon Transform[J]. CT Theory and Applications, 2016, 25(5): 539-546. DOI: 10.15953/j.1004-4140.2016.25.05.05 |
[6] | CHEN Xiong, WANG Cheng-yong, WU Di, WU Fa-en, CHEN Li-cheng. Reconstruct Digital Image by Algebraic Reconstruction Technique Based Programming[J]. CT Theory and Applications, 2015, 24(4): 485-493. DOI: 10.15953/j.1004-4140.2015.24.04.02 |
[7] | WANG Li-xin, HUANG Guang-tan, ZHANG Bin-bin, ZHU Wen-bo, ZHANG Jun-hua. Suppressing Method Study and Application of Seismic Scattered Wave Based on Local Hyperbolic Radon Transform[J]. CT Theory and Applications, 2014, 23(1): 27-36. |
[8] | XU Hai-jun, WEI Dong-bo, FU Jian, ZHANG Li-kai, DAI Xiu-bin. Fast Computation of 3D Radon Transform Via a Geometrical Method[J]. CT Theory and Applications, 2008, 17(2): 1-7. |
[9] | Zhang Tie, Yan Jiabin. The Error Analysis of Improved Fourier Algorithm for Solving Radon Transform[J]. CT Theory and Applications, 2000, 9(1): 12-16. |
[10] | Wang Jinping. The Inversion Formula of Radon Transform in R2[J]. CT Theory and Applications, 2000, 9(1): 8-11. |