Loading [MathJax]/jax/output/SVG/jax.js
ISSN 1004-4140
CN 11-3017/P
HE Y, WANG C X, YU W. Industrial CT Image Denoising Network Based on Channel Attention Mechanism[J]. CT Theory and Applications, xxxx, x(x): 1-8. DOI: 10.15953/j.ctta.2025.068. (in Chinese).
Citation: HE Y, WANG C X, YU W. Industrial CT Image Denoising Network Based on Channel Attention Mechanism[J]. CT Theory and Applications, xxxx, x(x): 1-8. DOI: 10.15953/j.ctta.2025.068. (in Chinese).

Industrial CT Image Denoising Network Based on Channel Attention Mechanism

More Information
  • Received Date: February 25, 2025
  • Revised Date: March 23, 2025
  • Accepted Date: March 24, 2025
  • Available Online: March 30, 2025
  • In industrial computerized tomography (CT), using noisy projection data for reconstruction increases the noise in the reconstructed image and reduces the signal-to-noise ratio (SNR). When the quality of projection data is poor, classical denoising and reconstruction algorithms are ineffective in removing the noise. To improve the quality of low signal-to-noise CT reconstructed images, this study proposes a deep learning-based denoising method. The method integrates squeeze-and-excitation blocks into the decoder phase and adaptively adjusts the weights of the channels to better preserve structural details during the denoising process. Experimental results demonstrate that the proposed method significantly reduces the noise and effectively preserves edge details, outperforming other comparative methods in both visual quality and quantitative values.

  • [1]
    BRENNER D J, ELLISTON C D, HALL E J, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT[J]. American journal of roentgenology, 2001, 176(2): 289-296. DOI: 10.2214/ajr.176.2.1760289.
    [2]
    BRENNER D J, HALL E J. Computed tomography—an increasing source of radiation exposure[J]. New England Journal of Medicine, 2007, 357(22): 2277-2284. DOI: 10.1056/NEJMra072149.
    [3]
    DE CHIFFRE L, CARMIGNATO S, KRUTH J P, et al. Industrial applications of computed tomography[J]. CIRP annals, 2014, 63(2): 655-677. DOI: 10.1016/j.cirp.2014.05.011.
    [4]
    IZUMI S, KAMATA S, SATOH K, et al. High energy X-ray computed tomography for industrial applications[J]. IEEE transactions on nuclear science, 1993, 40(2): 158-161. DOI: 10.1109/23.212333.
    [5]
    HIGAKI T, NAKAMURA Y, FUKUMOTO W, et al. Clinical application of radiation dose reduction at abdominal CT[J]. European Journal of Radiology, 2019, 111: 68-75. DOI: 10.1016/j.ejrad.2018.12.018.
    [6]
    NATTERER F. The mathematics of computerized tomography[M]. Society for Industrial and Applied Mathematics, 2001.
    [7]
    WILLEMINK M J, NOëL P B. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence[J]. European radiology, 2019, 29: 2185-2195. DOI: 10.1007/s00330-018-5810-7.
    [8]
    ANDERSEN A H, KAK A C. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm[J]. Ultrasonic imaging, 1984, 6(1): 81-94. DOI: 10.1177/016173468400600107.
    [9]
    SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine & Biology, 2008, 53(17): 4777.
    [10]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582.
    [11]
    CHEN Z, JIN X, LI L, et al. A limited-angle CT reconstruction method based on anisotropic TV minimization[J]. Physics in Medicine & Biology, 2013, 58(7): 2119.
    [12]
    GONG C, ZENG L, WANG C. Image reconstruction model for limited-angle CT based on prior image induced relative total variation[J]. Applied Mathematical Modelling, 2019, 74: 586-605. DOI: 10.1016/j.apm.2019.05.020.
    [13]
    LUO F, LI W, TU W, et al. Adaptive weighted total variation minimization based alternating direction method of multipliers for limited angle CT reconstruction[J]. IEEE Access, 2018, 6: 64225-64236. DOI: 10.1109/ACCESS.2018.2873713.
    [14]
    LIU Y, MA J, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction[J]. Physics in Medicine & Biology, 2012, 57(23): 7923.
    [15]
    YU W, ZENG L. l0 gradient minimization based image reconstruction for limited-angle computed tomography[J]. PloS one, 2015, 10(7): e0130793. DOI: 10.1371/journal.pone.0130793.
    [16]
    WANG T, WANG C, ZHAO K, et al. Guided image filtering based l0 gradient minimization for limited-angle CT image reconstruction[J]. Journal of Inverse and Ill-posed Problems, 2021, 29(4): 587-598.
    [17]
    WANG C, LUO X, YU W, et al. A variational proximal alternating linearized minimization in a given metric for limited-angle CT image reconstruction[J]. Applied Mathematical Modelling, 2019, 67: 315-336. DOI: 10.1016/j.apm.2018.09.038.
    [18]
    ZHANG Y, DONG B, LU Z. Minimization for wavelet frame based image restoration[J]. Mathematics of Computation, 2013, 82(282): 995-1015.
    [19]
    ZHOU W, CAI J F, GAO H. Adaptive tight frame based medical image reconstruction: A proof-of-concept study for computed tomography[J]. Inverse problems, 2013, 29(12): 125006. DOI: 10.1088/0266-5611/29/12/125006.
    [20]
    WANG C, ZENG L, GUO Y, et al. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data[J]. Inverse Problems and Imaging, 2017, 11(6): 917-948. DOI: 10.3934/ipi.2017043.
    [21]
    WANG G. A perspective on deep imaging[J]. IEEE access, 2016, 4: 8914-8924. DOI: 10.1109/ACCESS.2016.2624938.
    [22]
    朱元正, 吕启闻, 官瑜, 等. 基于深度能量模型的低剂量CT重建[J]. CT理论与应用研究, 2022, 31(6): 709-720. DOI: 10.15953/j.ctta.2021.077.

    ZHU Y Z, LV Q W, GUAN Y, et al. Low-dose CT reconstruction based on deep energy models[J]. CT Theory and Applications, 2022, 31(6): 709-720. DOI: 10.15953/j.ctta.2021.077.
    [23]
    CHEN H, ZHANG Y, ZHANG W, et al. Low-dose CT via convolutional neural network[J]. Biomedical optics express, 2017, 8(2): 679-694. DOI: 10.1364/BOE.8.000679.
    [24]
    ZHANG K, ZUO W, CHEN Y, et al. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[J]. IEEE transactions on image processing, 2017, 26(7): 3142-3155. DOI: 10.1109/TIP.2017.2662206.
    [25]
    RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 2015: 234-241.
    [26]
    樊雪林, 文昱齐, 乔志伟. 基于Transformer增强型U-net的CT图像稀疏重建与伪影抑制[J]. CT理论与应用研究(中英文), 2024, 33(1): 1-12. DOI: 10.15953/j.ctta.2023.183.

    FAN X L, WEN Y Q, QIAO Z W. Sparse reconstruction of computed tomography images with transformer enhanced U-net[J]. CT Theory and Applications, 2024, 33(1): 1-12. DOI: 10.15953/j.ctta.2023.183.
    [27]
    CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE transactions on medical imaging, 2017, 36(12): 2524-2535. DOI: 10.1109/TMI.2017.2715284.
    [28]
    OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: Learning where to look for the pancreas[J]. arxiv preprint arxiv: 1804.03999, 2018.
    [29]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
    [30]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
    [31]
    WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE transactions on medical imaging, 2017, 36(12): 2536-2545. DOI: 10.1109/TMI.2017.2708987.
    [32]
    YANG Q, YAN P, ZHANG Y, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J]. IEEE transactions on medical imaging, 2018, 37(6): 1348-1357. DOI: 10.1109/TMI.2018.2827462.
    [33]
    LI Z, HUANG J, YU L, et al. Low-dose CT image denoising using cycle-consistent adversarial networks[C]//2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2019: 1-3.
    [34]
    FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography[J]. Physics in Medicine & Biology, 2010, 55(18): 5401.
    [35]
    KANG D, SLOMKA P, NAKAZATO R, et al. Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm[C]//Medical Imaging 2013: Image Processing. SPIE, 2013, 8669: 671-676.
    [36]
    AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on signal processing, 2006, 54(11): 4311-4322. DOI: 10.1109/TSP.2006.881199.
    [37]
    SHI J, ELKILANY O, FISCHER A, et al. Lodoind: introducing a benchmark low-dose industrial CT dataset and enhancing denoising with 2.5D deep learning techniques[C]//13th Conference on Industrial Computed Tomography (iCT), Wels Campus, Austria. 2024, 10: 29228.

Catalog

    Article views (6) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return