ISSN 1004-4140
CN 11-3017/P
QIN H L, OU J, GOU Y Q, et al. Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction[J]. CT Theory and Applications, xxxx, x(x): 1-12. DOI: 10.15953/j.ctta.2025.060. (in Chinese).
Citation: QIN H L, OU J, GOU Y Q, et al. Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction[J]. CT Theory and Applications, xxxx, x(x): 1-12. DOI: 10.15953/j.ctta.2025.060. (in Chinese).

Computed Tomography Radiomics to Preoperatively Predict Regional Lymph Node Metastasis of Resectable Adenocarcinoma of the Esophagogastric Junction

More Information
  • Received Date: February 20, 2025
  • Revised Date: February 27, 2025
  • Accepted Date: February 28, 2025
  • Available Online: March 10, 2025
  • Objective: To construct and validate computed tomography (CT) radiomics models to preoperatively predict regional lymph node (LN) status of resectable adenocarcinoma of the esophagogastric junction (AEG). Methods: In total, 270 consecutive patients with AEG were enrolled in this study. Of these, 220 patients from Institution A were stratified into training (n=153) and test cohorts (n=67). The remaining 50 patients from Institution B were assigned to the external validation cohort. Within the training cohort, preoperative CT radiomics features extracted from the AEGs and LNs were used to construct the AEG and LN radiomics models, respectively; the radiomics scores (RS) of the AEGs and LNs were integrated with the clinical features to build the combined model. The predictive performances of the individual models were evaluated using the area under the receiver operating characteristic (AUROC) curve. The DeLong test was used to compare the predictive performance of the models. Results: Ten AEG and four LN radiomics features were screened to develop the AEG and LN radiomics models for predicting LN status, respectively. The combined model was developed by integrating AEG-RS and LN-RS with cT-stage and it achieved higher AUROC curve values than the AEG or LN radiomics models, alone, for the training (0.925 vs. 0.755 or 0.857), test (0.897 vs. 0.716 or 0.836), and external validation (0.935 vs. 0.706 or 0.849) cohorts. The DeLong test showed that the predictive performance of the combined model was significantly superior to that of the AEG and LN radiomics models, alone, in the three cohorts (all P <0. 05), and the predictive performance of the LN radiomics model was significantly superior to that of the AEG radiomics model in the three cohorts (all P < 0.05). Conclusion: Based on the radiomics method, the combined model is effective at preoperatively evaluating the regional lymph node status of patients with AEG.

  • [1]
    ALLEMANI C, MATSUDA T, DI CARLO V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391(10125): 1023-1075. DOI: 10.1016/S0140-6736(17)33326-3.
    [2]
    BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
    [3]
    KOSUGI SI, ICHIKAWA H, HANYU T, et al. Appropriate extent of lymphadenectomy for squamous cell carcinoma of the esophagogastric junction[J]. International Journal of Surgery, 2017, 44: 339-343. DOI: 10.1016/j.ijsu.2017.07.041.
    [4]
    KUROKAWA Y, TAKEUCHI H, DOKI Y, et al. Mapping of lymph node metastasis from esophagogastric junction tumors: A prospective nationwide multicenter study[J]. Annals of surgery, 2021, 274(1): 120-127. DOI: 10.1097/sla.0000000000003499.
    [5]
    朱甲明, 孙景旭, 王鑫 等. 食管胃结合部腺癌围手术期综合治疗进展[J]. 中国实用外科杂志, 2024, 44(10): 1186-1191. DOI: 10.19538/j.cjps.issn1005-2208.2024.10.21.

    ZHU J M, SU J X, WANG X, et al. Progress in perioperative multimodal therapy of esopha-gogastric junction adenocarcinoma[J]. Chinese Journal of Practical Surgery, 2024, 44(10): 1186-1191. DOI: 10.19538/j.cjps.issn1005-2208.2024.10.21.
    [6]
    YABUSAKI H, NASHIMOTO A, MATSUKI A, et al. Comparison of the surgical treatment strategies for Siewert type II squamous cell carcinoma in the same area as esophagogastric junction carcinoma: data from a single Japanese high-volume cancer center[J]. Surgery Today, 2014, 44(8): 1522-1528. DOI: 10.1007/s00595-013-0773-4.
    [7]
    RAPTIS D, MAAK M, KRAUTZ C, et al. Surgical and oncological outcome after extended lymph node dissection for carcinoma of the stomach and the esophagogastric junction: A retrospective analysis from an experienced single center[J]. Archives of Medical Science, 2024, 20(1): 124-132. DOI: 10.5114/aoms/141165.
    [8]
    RICE T W, ISHWARAN H, HOFSTETTER W L, et al. Esophageal cancer: Associations with (pN+) lymph node metastases[J]. Annals of surgery, 2017, 265(1): 122-129. DOI: 10.1097/sla.0000000000001594.
    [9]
    夏甘树, 刘志强, 李守淼, 等. 局部进展期食管胃结合部腺癌围手术期化疗疗效研究[J]. 中华肿瘤防治杂志, 2022, 29(21): 1563-1567. DOI: 10.16073/j.cnki.cjcpt.2022.21.07.

    XIA G S, LIU Z Q, LI S S, et al. Efficacy of perioperative chemotherapy for locally advanced adenocarcinoma of esophagogastric junction[J]. Chinese Journal of Cancer Prevention and Treatment, 2022, 29(21): 1563-1567. DOI: 10.16073/j.cnki.cjcpt.2022.21.07.
    [10]
    ELSHOLTZ FHJ, ASBACH P, HAAS M, et al. Introducing the Node Reporting and Data System 1.0 (Node-RADS): a concept for standardized assessment of lymph nodes in cancer[J]. European radiology, 2021, 31(8): 6116-6124. DOI: 10.1007/s00330-020-07572-4.
    [11]
    何辉虎, 高凯绩, 孙家和, 等. 规范化淋巴结分拣对胃食管结合部恶性肿瘤手术治疗的效果[J]. 安徽医科大学学报, 2024, 59(8): 1465-1470. DOI: 10.19405/j.cnki.issn1000-1492.2024.08.026.
    [12]
    TIAN D, LI HX, YANG YS, et al. The minimum number of examined lymph nodes for accurate nodal staging and optimal survival of stage T1-2 esophageal squamous cell carcinoma: A retrospective multicenter cohort with SEER database validation[J]. International journal of surgery, 2022, 104: 106764. DOI: 10.1016/j.ijsu.2022.106764.
    [13]
    YOSHIKAWA T, TAKEUCHI H, HASEGAWA S, et al. Theoretical therapeutic impact of lymph node dissection on adenocarcinoma and squamous cell carcinoma of the esophagogastric junction[J]. Gastric Cancer, 2016, 19(1): 143-149. DOI: 10.1007/s10120-014-0439-y.
    [14]
    邓靖宇. 胃癌根治术标本规范淋巴结送检及操作中国专家共识(2019版)[J]. 中国实用外科杂志, 2019, 39(9): 881-889. DOI: 10.19538/j.cjps.issn1005-2208.2019.09.01.
    [15]
    KUBOTA K, SUZUKI A, SHIOZAKI H, et al. Accuracy of multidetector-row computed tomography in the preoperative diagnosis of lymph node metastasis in patients with gastric cancer[J]. Gastrointestinal Tumors, 2017, 3(3/4): 163-170. DOI: 10.1159/000454923.
    [16]
    FOLEY K G, CHRISTIAN A, FIELDING P, et al. Accuracy of contemporary oesophageal cancer lymph node staging with radiological-pathological correlation[J]. Clinical Radiology, 2017, 72(8): 693. e1-693. e7. DOI: 10.1016/j.crad.2017.02.022.
    [17]
    JIA PF, LI YR, WANG LY, et al. Radiomics in esophagogastric junction cancer: A scoping review of current status and advances[J]. European Journal of Radiology, 2024, 177: 111577. DOI: 10.1016/j.ejrad.2024.111577.
    [18]
    HILEY C, DE BRUIN EC, MCGRANAHAN N, et al. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine[J]. Genome Biology, 2014, 15(8): 453. DOI: 10.1186/s13059-014-0453-8.
    [19]
    AVANZO M, STANCANELLO J, EL NAQA I. Beyond imaging: The promise of radiomics[J]. Physica Medica, 2017, 38: 122-139. DOI: 10.1016/j.ejmp.2017.05.071.
    [20]
    REGINELLI A, NARDONE V, GIACOBBE G, et al. Radiomics as a new frontier of imaging for cancer prognosis: A narrative review[J]. Diagnostics (Basel), 2021, 11(10). DOI: 10.3390/diagnostics11101796.
    [21]
    周健文, 冯峰. 食管癌CT影像组学研究进展[J]. CT理论与应用研究, 2022, 31(05): 687-696. DOI: 10.15953/j.ctta.2021.006.

    ZHOU H, FENG F. Enhancing Esophageal Cancer Prognosis and Treatment Evaluation: Recent Advances in Computed Tomography Radiomics[J]. CT Theory and Applications, 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155. (in Chinese).
    [22]
    KOSUGA T, KONISHI T, KUBOTA T, et al. Clinical significance of neutrophil-to-lymphocyte ratio as a predictor of lymph node metastasis in gastric cancer[J]. BMC cancer, 2019, 19(1): 1187. DOI: 10.1186/s12885-019-6404-8.
    [23]
    LI Z L, ZHAO L Y, ZHANG W H, et al. Clinical significance of lower perigastric lymph nodes dissection in Siewert type II/III adenocarcinoma of esophagogastric junction: A retrospective propensity score matched study[J]. Langenbeck’s Archives of Surgery, 2022, 407(3): 985-998. DOI: 10.1007/s00423-021-02380-w.
    [24]
    周慧, 冯峰. 食管癌疗效评价及预后的CT影像组学研究进展[J]. CT理论与应用研究(中英文), 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155.

    ZHOU H, FENG F. Enhancing Esophageal Cancer Prognosis and Treatment Evaluation: Recent Advances in Computed Tomography Radiomics[J]. CT Theory and Applications, 2024, 33(3): 377-383. DOI: 10.15953/j.ctta.2023.155.
    [25]
    RICE T W, ISHWARAN H, FERGUSON M K, et al. Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer[J]. Journal of Thoracic Oncology, 2017, 12(1): 36-42. DOI: 10.1016/j.jtho.2016.10.016.
    [26]
    SHI Y J, LIU C, WEI Y Y, et al. Quantitative CT analysis to predict esophageal fistula in patients with advanced esophageal cancer treated by chemotherapy or chemoradiotherapy[J]. Cancer Imaging, 2022, 22(1): 62. DOI: 10.1186/s40644-022-00490-2.
    [27]
    LI R, CHEN T W, HU J, et al. Tumor volume of resectable adenocarcinoma of the esophagogastric junction at multidetector CT: Association with regional lymph node metastasis and N stage[J]. Radiology, 2013, 269(1): 130-138. DOI: 10.1148/radiol.13122269.
    [28]
    ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
    [29]
    DU K P, HUANG W P, LIU S Y, et al. Application of computed tomography-based radiomics in differential diagnosis of adenocarcinoma and squamous cell carcinoma at the esophagogastric junction[J]. World journal of gastroenterology, 2022, 28(31): 4363-4375. DOI: 10.3748/wjg.v28.i31.4363.
    [30]
    LI J, DONG D, FANG M, et al. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer[J]. European radiology, 2020, 30(4): 2324-2333. DOI: 10.1007/s00330-019-06621-x.
    [31]
    HUANG W, LI L, LIU S, et al. Enhanced CT-based radiomics predicts pathological complete response after neoadjuvant chemotherapy for advanced adenocarcinoma of the esophagogastric junction: A two-center study[J]. Insights into imaging, 2022, 13(1): 134. DOI: 10.1186/s13244-022-01273-w.
    [32]
    LIU S, SHI H, JI C, et al. Preoperative CT texture analysis of gastric cancer: Correlations with postoperative TNM staging[J]. Clinical radiology, 2018, 73(8): 756. e1-756. e9. DOI: 10.1016/j.crad.2018.03.005.
    [33]
    LI Y, GU X, YANG L, et al. Prediction of lymphovascular invasion in esophageal squamous cell carcinoma by computed tomography-based radiomics analysis: 2D or 3D?[J]. Cancer Imaging, 2024, 24(1): 141. DOI: 10.1186/s40644-024-00786-5.
    [34]
    ZHENG H D, TIAN Y C, HUANG Q Y, et al. Enhancing lymph node metastasis prediction in adenocarcinoma of the esophagogastric junction: A study combining radiomic with clinical features[J]. Medical physics, 2024, 51(12): 9057-9070. DOI: 10.1002/mp.17374.
    [35]
    LOPCI E, KAUPPI J, LUGARESI M, et al. Siewert type I and II oesophageal adenocarcinoma: Sensitivity/specificity of computed tomography, positron emission tomography and endoscopic ultrasound for assessment of lymph node metastases in groups of thoracic and abdominal lymph node stations[J]. Interactive cardiovascular and thoracic surgery, 2019, 28(4): 518-525. DOI: 10.1093/icvts/ivy314.
    [36]
    NG F, GANESHAN B, KOZARSKI R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival[J]. Radiology, 2013, 266(1): 177-184. DOI: 10.1148/radiol.12120254.
    [37]
    GANESHAN B, GOH V, MANDEVILLE H C, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT[J]. Radiology, 2013, 266(1): 326-336. DOI: 10.1148/radiol.12112428.
    [38]
    LUBNER M G, SMITH A D, SANDRASEGARAN K, et al. CT texture analysis: Definitions, applications, biologic correlates, and challenges[J]. Radiographics, 2017, 37(5): 1483-1503. DOI: 10.1148/rg.2017170056.
    [39]
    薛公博, 刘鸿雁, 王国华, 等. 不同重建算法对肝脏肿瘤患者门静脉期腹部CT直方图和小波特征的影响[J]. 中华放射学杂志, 2025, 59(1): 50-56. DOI: 10.3760/cma.j.cn112149-20241124-00697.
    [40]
    KAKEJI Y, YAMAMOTO M, ITO S, et al. Lymph node metastasis from cancer of the esophagogastric junction, and determination of the appropriate nodal dissection[J]. Surgery Today, 2012, 42(4): 351-358. DOI: 10.1007/s00595-011-0114-4.

Catalog

    Article views (33) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return