Citation: | CUI C, WEN Q X, LIU N, et al. Feasibility of opportunistic osteoporosis screening using an artificial intelligence-based bone density measurement on chest CT scans[J]. CT Theory and Applications, xxxx, x(x): 1-5. DOI: 10.15953/j.ctta.2024.289. (in Chinese). |
This study explores the feasibility of opportunistic osteoporosis screening using an artificial intelligence (AI)-based bone mineral density (BMD) measurement system on chest computed tomography (CT) scans. A retrospective analysis was conducted on 462 patients who underwent both dual-energy X-ray absorptiometry (DXA) and chest CT in our department between August 2023 and July 2024. The cohort included 317 postmenopausal women and 145 men aged > 50 years. BMD measurements from the AI system and DXA were compared. Using the T-value measured by DXA as the reference standard, the consistency and correlation between AI-based and DXA-measured BMD were analyzed. Significant differences in height, weight, DXA T-value, and AI-derived BMD were observed between men aged > 50 years and postmenopausal women. The AI-derived BMD showed a correlation coefficient of 0.767 with DXA T-values and a κ value of 0.697. The area under the ROC curve for AI-based diagnosis of osteoporosis was 0.941(95% CI 0.914–0.968), with a sensitivity of 85.71% and a specificity of 93.84%. The AI-based BMD measurement system demonstrates strong correlation and good agreement with DXA, supporting its feasibility for opportunistic osteoporosis screening.
[1] |
LIU F, ZHU H, MA J, et al. Performance of iCare quantitative computed tomography in bone mineral density assessment of the hip and vertebral bodies in European spine phantom[J]. Journal of Orthopaedic Surgery and Research, 2023, 18(1): 777. DOI: 10.1186/s13018-023-04174-w.
|
[2] |
CUI Z, MENG X, FENG H, et al. Estimation and projection about the standardized prevalence of osteoporosis in mainland China[J]. Archives of Osteoporosis, 2019, 15(1): 2. DOI: 10.1007/s11657-019-0670-6.
|
[3] |
SI L, WINZENBERG T M, JIANG Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010-2050[J]. Osteoporosis International, 2015, 26(7): 1929-1937. DOI: 10.1007/s00198-015-3093-2.
|
[4] |
DE MARGERIE-MELLON C, CHASSAGNON G. Artificial intelligence: A critical review of applications for lung nodule and lung cancer[J]. Diagnostic and Interventional Imaging, 2023, 104(1): 11-17. DOI: 10.1016/j.diii.2022.11.007.
|
[5] |
孙安, 樊荣荣, 孙瑶, 等. CT重组算法对低剂量胸部CT筛查冠状动脉钙化积分准确性影响研究[J]. 临床放射学杂志, 2022, 41(5): 881-885. DOI: 10.13437/j.cnki.jcr.2022.05.025.
SUN A, FAN R, SUN Y, et al. The effect of CT reconstruction kernel on the accuracy of low-dose chest CT screening for coronary artery calcification scores[J]. Journal of Clinical Radiology, 2022, 41(5): 881-885. DOI: 10.13437/j.cnki.jcr.2022.05.025.
|
[6] |
赵宇, 张晓岚, 郑超, 等. 基于低剂量胸部CT深度学习模型自动测量骨密度研究[J]. 放射学实践, 2024, 39(2): 262-266. DOI: 10.13609/j.cnki.1000-0313.2024.02.019.
ZHAO Y, ZHANG X L, ZHENG C, et al. Bone densitometry measurement based on low-dose chest CT with deep learning model[J]. Radiol Practice, 2024, 39(2): 262-266. DOI: 10.13609/j.cnki.1000-0313.2024.02.019.
|
[7] |
赵君禄, 刘斋, 韩康, 等. 基于定量CT的机会性骨质疏松诊断: 2种定量CT骨密度测量软件临床应用比较分析[J]. 河北医科大学学报, 2024, 45(1): 17-23. DOI: 10.3969/j.issn.1007-3205.2024.01.005.
ZHAO J L, LIU Z, HAN K, et al. Computed tomography—based opportunistic osteoporosis diagnosis: A comparison of clinical applications of two quantitative CT softwares[J]. Journal of Hebei Medical University, 2024, 45(1): 17-23. DOI: 10.3969/j.issn.1007-3205.2024.01.005.
|
[8] |
SIRIS E S, ADLER R, BILEZIKIAN J, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group[J]. Osteoporosis International, 2014, 25(5): 1439-1443. DOI: 10.1007/s00198-014-2655-z.
|
[9] |
BUDOFF M J, HAMIRANI Y S, GAO Y L, et al. Measurement of thoracic bone mineral density with quantitative CT[J]. Radiology, 2010, 257(2): 434-440. DOI: 10.1148/radiol.10100132.
|
[10] |
KENDRICK J, FRANCIS R J, HASSAN G M, et al. Prognostic utility of RECIP 1.0 with manual and AI-based segmentations in biochemically recurrent prostate cancer from [(68)Ga]Ga-PSMA-11 PET images[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50(13): 4077-4086. DOI: 10.1007/s00259-023-06382-2.
|
[11] |
GERETY E L, HOPPER M A, BEARCROFT P W. The reliability of measuring the density of the L1 vertebral body on CT imaging as a predictor of bone mineral density[J]. Clinical Radiology, 2017, 72(2): 177-179. DOI: 10.1016/j.crad.2016.09.022.
|
[12] |
YAN L, WANG X, YU T, et al. Characteristics of the gut microbiota and serum metabolites in postmenopausal women with reduced bone mineral density[J]. Frontiers in Cellular and Infection Microbiology, 2024, 14: 1367325. DOI: 10.3389/fcimb.2024.1367325.
|
[13] |
WU X, ZHANG M. Effects of androgen and progestin on the proliferation and differentiation of osteoblasts[J]. Experimental and Therapeutic Medicine, 2018, 16(6): 4722-4728. DOI: 10.3892/etm.2018.6772.
|
[14] |
KIM Y W, KIM J H, YOON S H, et al. Vertebral bone attenuation on low-dose chest CT: Quantitative volumetric analysis for bone fragility assessment[J]. Osteoporosis International, 2017, 28(1): 329-338. DOI: 10.1007/s00198-016-3724-2.
|
[15] |
SAVAGE R H, van ASSEN M, MARTIN S S, et al. Utilizing Artificial Intelligence to Determine Bone Mineral Density Via Chest Computed Tomography[J]. Journal of Thoracic Imaging, 2020, 35 Suppl 1: S35-S39. DOI: 10.1097/RTI.0000000000000484.
|
[16] |
LIN W, HE C, XIE F, et al. Quantitative CT screening improved lumbar BMD evaluation in older patients compared to dual-energy X-ray absorptiometry[J]. Bmc Geriatrics, 2023, 23(1): 231. DOI: 10.1186/s12877-023-03963-6.
|
[17] |
王盟盟, 张磊, 周凤云, 等. 双层光谱CT、QCT及DXA在骨质疏松诊断中的精确性与效能比较[J]. CT理论与应用研究, 2024, 33(6): 717-724. DOI: 10.15953/j.ctta.2024.086.
WANG M M, ZHANG L, ZHOU F Y, et al. Comparative Study of the Accuracies and Efficiencies of Dual-layer Spectral CT, QCT, and DXA for Osteoporosis Diagnosis[J]. CT Theory and Applications, 2024, 33(6): 717-724. DOI: 10.15953/j.ctta.2024.086.
|
[18] |
EBBESEN E N, THOMSEN J S, BECK-NIELSEN H, et al. Vertebral bone density evaluated by dual-energy X-ray absorptiometry and quantitative computed tomography in vitro[J]. Bone, 1998, 23(3): 283-290. DOI: 10.1016/s8756-3282(98)00091-x.
|
[19] |
WONG M, PAPA A, LANG T, et al. Validation of thoracic quantitative computed tomography as a method to measure bone mineral density[J]. Calcified Tissue International, 2005, 76(1): 7-10. DOI: 10.1007/s00223-004-0020-5.
|
[20] |
张羽, 张宗军, 刘许慧, 等. 胸椎定量CT和腰椎双能X线吸收检测仪对绝经后女性骨质疏松症的诊断差异[J]. 放射学实践, 2022, 37(10): 1205-1210. DOI: 10.13609/j.cnki.1000-0313.2022.10.003.
ZHANG Y, ZHANG Z J, LIU X H, et al. Diagnosis difference of thoracic spine quantitative CT and lumbar spine DXA for osteoporosis in postmenopausal women[J]. Radiol Practice, 2022, 37(10): 1205-1210. DOI: 10.13609/j.cnki.1000-0313.2022.10.003.
|