Citation: | WEI T G, ZHANG H, LI F Q, et al. Application of Multi-scale Curvature in Fault Interpretation of K Oilfield in Bohai Sea[J]. CT Theory and Applications, 2024, 33(6): 773-780. DOI: 10.15953/j.ctta.2024.036. (in Chinese). |
Ascertaining the curvature attributes of fault systems depends on the partial derivative, which is easily disturbed by noise. Therefore, an edge-preserving de-noising filter is used to preprocess seismic data, effectively improving the signal-to-noise ratio and maintaining information on the edge structure. On this basis, multi-scale curvature analysis is realized by using multi-scale operators in a time–frequency–wavenumber domain. This attribute fully considers the complexity of geological structure and fault distribution characteristics. Small-scale curvature attributes can better represent subtle changes in geological structure, which is conducive to avoiding risk faults in the oilfield development phase. Large-scale curvature attributes are conducive to the macro analysis of fault distribution characteristics, which plays an important role in regional exploration. The multi-scale curvature method has been well applied to fault interpretation in the Bohai K Oilfield and has proven beneficial to the drilling of oilfield development wells.
[1] |
魏天罡, 李福强, 李久, 等. 基于匹配追踪的反射系数反演在渤海PL油田的应用[J]. 海洋技术学报, 2022, 41: 69−75. DOI: 10.3969/j.issn.1003-2029.2022.02.009.
WEI T G, LI F Q, LI J, et al. The application of reflection coefficient inversion based on matching pursuit in Bohai PL Oilfield[J]. Journal of Ocean Technology, 2022, 41: 69−75. DOI: 10.3969/j.issn.1003-2029.2022.02.009. (in Chinese).
|
[2] |
LISLE R J. Detection of zones of abnormal strains in structures using gaussian curvature analysis[J]. AAPG Bulletin, 1994, 78: 1811−1819.
|
[3] |
ERICSSON J B. Facies and curvature controlled 3D fracture models in a cretaceous carbonate reservoir, Arabian Gulf[J]. Geological Society, London, Special Publications, 1998, 147: 299−312. DOI: 10.1144/GSL.SP.1998.147.01.20.
|
[4] |
ROBERTS A. Curvature attributes and their application to 3D interpreted horizons[J]. First Break, 2001, 19(2): 85−100. DOI: 10.1046/j.0263-5046.2001.00142.x.
|
[5] |
AL-DOSSARY S, MARFURT K J. 3D volumetric multispectral estimates of reflector curvature and rotation[J]. Geophysics, 2006, 71(5): 41−51. DOI: 10.1190/1.2242449.
|
[6] |
CHEN X H. The algorithm of 3D multi-scale volumetric curvature and its application[J]. Applied Geophysics, 2012, 9(1): 65−72. DOI: 10.1007/s11770-012-0315-7.
|
[7] |
杨威, 贺振华, 陈学华. 三维体曲率属性在断层识别中的应用[J]. 地球物理学进展, 2011, 26(1): 110−115. DOI: 10.3969/j.issn.1004-2903.2011.01.011.
YANG W, HE Z H, CHEN X H. Application of three-dimensional volumetric curvature attributes to fault identification[J]. Progress in Geophysics, 2011, 26(1): 110−115. DOI: 10.3969/j.issn.1004-2903.2011.01.011. (in Chinese).
|
[8] |
杨威. 曲率属性分析及应用[D]. 成都: 成都理工大学, 2011.
|
[9] |
郑静静. 基于曲波变换和贝叶斯理论的储层预测方法研究[D]. 东营: 中国石油大学(华东), 2011.
|
[10] |
高京华. 基于离心窗扫描的地震几何属性提取方法研究[D]. 东营: 中国石油大学(华东), 2015.
|
[11] |
张文, 伍新明, 漆杰. 地震几何属性的快速算法实现[J]. 地球物理学报, 2023, 66(8): 3374−3390. DOI: 10.6038/cjg2022Q0367.
ZHANG W, WU X M, QI J. Fast computation of seismic geometric attributes[J]. Chinese Journal of Geophysics, 2023, 66(8): 3374−3390. DOI: 10.6038/cjg2022Q0367. (in Chinese).
|
[12] |
胡建波, 刘之的, 段玉顺, 等. 小尺度断裂沿层曲率敏感性研究[J]. 地质与勘探, 2023, 59(4): 0891−0900. DOI: 10.12134/j.dzykt.2023.04.015.
HU J B, LIU Z D, DUAN Y S, et al. Sensitivity of small-scale faults curvature along the layer[J]. Geology and Exploration, 2023, 59(4): 0891−0900. DOI: 10.12134/j.dzykt.2023.04.015. (in Chinese).
|
[13] |
CHOPRA S, MARFURT K J. Curvature attribute applications to 3D surface seismic data[J]. The Leading Edge, 2007, 26(4): 404−414. DOI: 10.1190/1.2723201.
|
[14] |
CHOPRA S, MARFURT K J. Volumetric curvature attributes add value to 3D seismic data interpretation[J]. The Leading Edge, 2007, 26(7): 856−867. DOI: 10.1190/1.2756864.
|
[15] |
CHOPRA S, MARFURT K J. Emerging and future trends in seismic attributes[J]. The Leading Edge, 2008, 27(3): 298−318. DOI: 10.1190/1.2896620.
|
[16] |
王伟. 地震几何属性识别断层技术研究及应用[D]. 东营: 中国石油大学(华东), 2009.
|
[17] |
张军华, 王伟, 谭明友, 等. 曲率属性及其在构造解释中的应用[J]. 油气地球物理, 2009, 7(2): 1−7.
ZHANG J H, WANG W, TAN M Y, et al. Curvature attributes and their application in structural interpretation[J]. Petroleum Geophysics, 2009, 7(2): 1−7. (in Chinese).
|
[18] |
LUO Y. Edge preserving smoothing and its applications in seismic edge detection[J]. The Leading Edge, 2002, 21: 136−141. DOI: 10.1190/1.1452603.
|
[19] |
LIU Y, LUO Y. Edge preserving smoothing for oblique images[J]. Geophysical Research Letters, 2003, 30(13).
|
[20] |
ALBINHASSAN N M, LUO Y, MOHAMMED N. 3D edge preserving smoothing and applications[J]. Geophysics, 2006, 71(4): 5−11.
|
[21] |
张莹芳, 陈平, 潘晋孝. 基于全变分与交替保边扩散平滑的稀疏角度CT重建算法[J]. 中国体视学与图像分析, 2022, 27(2): 113−121.
|
[22] |
周俊捷, 吴相伶, 李文杰, 等. 基于分块字典学习理论的地震数据去噪[J]. CT理论与应用研究, 2022, 31(5): 557−566. DOI: 10.15953/j.1004-4140.2022.31.05.03.
ZHOU J J, WU X L, LI W J, et al. Denoising of seismic data based on block dictionary learning theory[J]. CT Theory and Applications, 2022, 31(5): 557−566.10.15953/j.1004-4140.2022.31.05.03. (in Chinese).
|
[23] |
赵岩, 贺振华, 黄德济. 基于保边去噪的高精度相干体分析应用研究[J]. 长江大学学报(自然科学版), 2009, 6(4): 169−171.
ZHAO Y, HE Z H, HUANG D J. High-accuracy coherence analysis based on edge-preserving smoothing[J]. Journal of Yangtze University (Natural Science Edition), 2009, 6(4): 169−171. (in Chinese).
|
[24] |
范桃园, 杨长春. 自适应三维地震保边界去噪方法及应用[J]. 石油地球物理勘探, 2009, 44(5): 558−563. DOI: 10.3321/j.issn:1000-7210.2009.05.007.
FAN T Q, YANG C C. 3D adaptive seismic edge-preserving smoothing and its application[J]. Oil Geophysical Prospecting, 2009, 44(5): 558−563. DOI: 10.3321/j.issn:1000-7210.2009.05.007. (in Chinese).
|
[1] | QI Weiwei, CHENG Jin, CHEN Chuhan, AN Bei, LIU Xiaoyi, FU Ling, WANG Yi. Value of Low Tube Voltage Combined with Deep Learning Image Reconstruction Algorithm to Reduce Radiation Dose in Combined Thoracoabdominal Enhanced CT[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2025.001 |
[2] | Peng Lexin¹, Ma Zixuan², Niu Yantao², Zhang Yongxian², Hu Lingjing¹, Wu Ning¹, Gao Xing³, Liu Dandan. The Effect of X-ray Energy on Dosimeter Measurements of CT Radiation Dose[J]. CT Theory and Applications. DOI: 10.15953/j.ctta.2024.315 |
[3] | NI Xiaolong, ZHOU Fengyun, SHI Zheng, MA Yongzhong, CHENG Xiaoguang. Study on the Radiation Dose Distribution of Abdominal CT Scans Based on Dose Simulation Humans[J]. CT Theory and Applications, 2024, 33(6): 808-814. DOI: 10.15953/j.ctta.2024.087 |
[4] | YANG Zhengjun, ZHANG Ang, CHEN Yong, JIANG Jiang, WANG Lingyun, ZHANG Yong, ZHANG Xuan, QI Xiaofeng. The Effect of Radiation Dose and Tube Potential on Image Quality of CT: A Task-based Image Quality Assessment[J]. CT Theory and Applications, 2022, 31(2): 211-217. DOI: 10.15953/j.ctta.2021.060 |
[5] | WANG Wenjie, CHEN Ping, PAN Jinxiao, LI Yihong. Dual-energy CT Imaging Method Based on Reference Components[J]. CT Theory and Applications, 2021, 30(1): 61-69. DOI: 10.15953/j.1004-4140.2021.30.01.06 |
[6] | LIU Wangyang, SUN Cunjie, ZHAO Honglan, WANG Xiuling. Study on Evaluation Method of Radiation Dose of Patients in TACE of IVR-CT[J]. CT Theory and Applications, 2019, 28(6): 653-658. DOI: 10.15953/j.1004-4140.2019.28.06.02 |
[7] | LIANG Hong-sheng, CHEN Jin-jun, CHEN Xiao-yu, LIANG Yu-hao, OU Jian-yang, MA Guan-hua. Dose 4D CARE Technology Combined with Low kV and Low Dose Contrast Agent in MSCT Head and Neck Vascular Imaging Applications[J]. CT Theory and Applications, 2017, 26(5): 605-612. DOI: 10.15953/j.1004-4140.2017.26.05.10 |
[8] | CHEN Yun-bin, WANG Yuan, LIU Qing-hua. Several Methods for Reducing the Dose of Cone Beam CT[J]. CT Theory and Applications, 2017, 26(3): 327-334. DOI: 10.15953/j.1004-4140.2017.26.03.09 |
[9] | CAO Yu, ZHANG Yong-xian. Comparison of Multi-slice Spiral CT Imaging for Cardiac Coronary Arteries with Different Radiation Doses[J]. CT Theory and Applications, 2016, 25(1): 95-101. DOI: 10.15953/j.1004-4140.2016.25.01.12 |
[10] | YANG Chang-jun, YANG Xin. Abdominal CT Image Segmentation Based on Graph Cuts and Fast Level Set[J]. CT Theory and Applications, 2011, 20(3): 291-300. |