ISSN 1004-4140
CN 11-3017/P

索伦-西拉木伦缝合带中段及周边区域面波层析成像

冯梅, 安美建, 侯贺晟, 范桃园, 臧虎临

冯梅, 安美建, 侯贺晟, 等. 索伦-西拉木伦缝合带中段及周边区域面波层析成像[J]. CT理论与应用研究, 2023, 32(1): 1-14. DOI: 10.15953/j.ctta.2022.061.
引用本文: 冯梅, 安美建, 侯贺晟, 等. 索伦-西拉木伦缝合带中段及周边区域面波层析成像[J]. CT理论与应用研究, 2023, 32(1): 1-14. DOI: 10.15953/j.ctta.2022.061.
FENG M, AN M J, HOU H S, et al. The Lithospheric Structure of the Middle Solonker−Xar Moron Suture by Surface-wave Tomography[J]. CT Theory and Applications, 2023, 32(1): 1-14. DOI: 10.15953/j.ctta.2022.061. (in Chinese).
Citation: FENG M, AN M J, HOU H S, et al. The Lithospheric Structure of the Middle Solonker−Xar Moron Suture by Surface-wave Tomography[J]. CT Theory and Applications, 2023, 32(1): 1-14. DOI: 10.15953/j.ctta.2022.061. (in Chinese).

索伦-西拉木伦缝合带中段及周边区域面波层析成像

基金项目: 国家自然科学基金(利用高覆盖宽频地震观测研究南美大陆岩石圈三维结构(41974051));中国地质调查项目(黑吉蒙关键区带深部地质调查(DD20221643-2);松嫩地块及周缘关键区带深部地质调查(DD20190010))。
详细信息
    作者简介:

    冯梅: 女,博士,中国地质科学院研究员,主要从事地震学、地球动力学方面的基础和应用研究,E-mail:mei_feng_cn@163.com

  • 中图分类号: P  315

The Lithospheric Structure of the Middle Solonker−Xar Moron Suture by Surface-wave Tomography

More Information
    Corresponding author:

    FENG Mei: 冯梅

  • 摘要: 索伦-西拉木伦缝合带中段及周边区域先后经历了古生代古亚洲洋闭合、中生代蒙古鄂霍茨克洋闭合和中新生代太平洋俯冲等构造复合叠加,导致该区深部构造异常复杂。本研究从该区近年来累积的宽频地震探测资料的地震面波和环境噪音互相关格林函数中提取瑞雷波群速度频散,并据此反演区域尺度的三维横波速度。结果发现:区域地壳厚度横向变化不大,松辽盆地和下辽河盆地地壳比大兴安岭薄,地壳厚度与地形吻合表明这些地区基本达到重力均衡状态;而辽东隆起和渤海湾盆地地壳厚度与地形高度呈反相关,表明这些地区可能仍处于构造改造过程中。在80 km深度之下,波速分布则呈现与索伦-西拉木伦缝合带走向近似平行的东西向展布。以索伦-西拉木伦缝合带为界,南北两侧横波速分布复杂程度明显不同且南侧的东西两部分复杂程度也不同。这些结果表明区域受太平洋俯冲体系冲破坏程度存在明显差异,同时索伦-西拉木伦缝合带以南可能仍有古亚洲洋板片残留。
    Abstract: The middle section of the Solonker-Xar Moron suture and its surrounding areas have successively been affected by the closure of the Paleo-Asian Ocean during the Paleozoic, the closure of the Mongolian-Okhotsk Ocean during the Mesozoic, and the subduction of the Pacific Ocean plate since the Meso-Cenozoic, resulting in very complex, deep structures in this area. We conducted a regional-scale three-dimensional S-wave velocity tomographic study of the area. To do this, we used surface waves from earthquake data and ambient noise data recorded in recent years. The lithospheric tomographic model shows that the regional crustal thickness does not vary considerably, but the crust in the Songliao and the Lower Liaohe basins is thinner than that in the Daxing'an Mountains. The fact that the crustal thickness remains consistent with changes in topography indicates that these areas have reached gravitational equilibrium. However, the crustal thickness of the Liaodong uplift and the Bohai Bay Basin is inversely related with topography, indicating that these areas may still be in a tectonically active state. At depths greater than 80 km, the S-wave velocities spread in an east-west direction approximately parallel to the Solonker-Xar Moron suture. The complexity of the upper-mantle velocity distribution to the north of the Solonker-Xar Moron suture differs significantly from that to its south. Furthermore, south of the Solonker-Xar Moron suture, the complexity of the velocity distribution in the east differs considerably from that in the west. This implies that the destruction resulting from the Pacific Ocean subduction system varies significantly within the study region, and remnants of the paleo-Asian ocean slab may still exist in the south.
  • 图  1   研究区地形和构造简图。白线表示图6显示的横波速度剖面位置

    Figure  1.   Topography and tectonics of the study area. White lines indicate locations of S-velocity transects to be shown in Fig.6

    图  2   地震台站和数据分布情况

    (a)地震台站(三角)以及50 s周期的数据方位分布(玫瑰图);(b)地震事件(细黑线)和环境噪音(细灰线)波频散观测及其区域平均(粗灰线、虚线)。玫瑰图中扇形半径与每30°方位间隔内的观测数量成正比;扇形半径越长,该方位观测数量越大;玫瑰图越接近于圆形,表示观测数据方位分布越均匀。

    Figure  2.   Seismic stations and data

    图  3   相似路径(插图)的地震面波(a)和噪音格林函数(b)时频分析实例

    Figure  3.   Example of group-velocity dispersion analysis for earthquake surface wave (a) and noise Green’s function (b) with similar travelling paths (inset map)

    图  4   三维检测板分辨率测试结果

    (a)异常尺寸为1.2°×1.2°×(15~40 km);(b)异常尺寸为1.8°×1.8°×(20~60 km);(c)检测板尺寸为2.4°×2.4°×(30~70 km)。注为“深度”和“剖面”的子图分别表示不同深度水平切片和穿过不同剖面的垂直切片。水平切片中白线为相应垂直剖面位置。

    Figure  4.   Results of 3D checkerboard resolution tests

    图  5   不同深度横波速度水平切片

    Figure  5.   Horizontal slices of S-wave velocity at different depths

    图  6   横波速度垂向切片(剖面位置见图1白线所示)

    剖面顶部为放大的地形;黑圈为1964年以来EHB目录中在该区的地震[55];地表红竖线为构造或缝合线;CKF=赤峰-开原断裂;TLF=郯庐断裂带;SXS=索伦-西拉木伦缝合带;AB=华北北缘增生带;GGT=重力梯度带;NCC=华北克拉通。

    Figure  6.   Vertical slices of S-wave velocity (transect locations are indicated as white lines in Fig.1)

  • [1]

    FU W, HOU H S, GAO R, et al. Lithospheric structures of the central Solonker-Xar Moron-Changchun-Yanji suture (Inner Mongolia) revealed by a deep seismic reflection profile[J]. Tectonophysics, 2021, 817: 229043. doi: 10.1016/j.tecto.2021.229043

    [2]

    LIU Y J, LI W M, FENG Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    [3]

    WILDE S A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction: A review of the evidence[J]. Tectonophysics, 2015, 662: 345−362. doi: 10.1016/j.tecto.2015.05.006

    [4] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009,36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001

    PAN G T, XIAO Q H, LU S N, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1−28. (in Chinese). doi: 10.3969/j.issn.1000-3657.2009.01.001

    [5]

    ZHU R X, XU Y G. The subduction of the West Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62: 1340−1350. doi: 10.1007/s11430-018-9356-y

    [6]

    GUO Z, WANG K, YANG Y J, et al. The origin and mantle dynamics of quaternary intraplate volcanism in Northeast China from joint inversion of surface wave and body wave[J]. Journal of Geophysical Research, 2018, 123(3): 2410−2425. doi: 10.1002/2017JB014948

    [7]

    TANG Y C, OBAYASHI M, NIU F L, et al. Changbaishan volcanism in Northeast China linked to subduction-induced mantle upwelling[J]. Nature Geoscience, 2014, 7(6): 470−475. doi: 10.1038/ngeo2166

    [8]

    LU M W, LEI J S, ZHAO D P, et al. SKS Splitting measurements in NE China: New insights into the Wudalianchi intraplate volcanism and mantle dynamics[J]. Journal of Geophysical Research, 2020, 125(3): e2019JB018575.

    [9]

    FAN X L, CHEN Q F. Seismic constraints on the magmatic system beneath the Changbaishan volcano: Lnsight into its origin and regional tectonics[J]. Journal of Geophysical Research, 2019, 124(2): 2003−2024. doi: 10.1029/2018JB016288

    [10]

    DENG Y F, XU Y G, CHEN Y. Formation mechanism of the North-South gravity lineament in Eastern China[J]. Tectonophysics, 2021, 818: 229074. doi: 10.1016/j.tecto.2021.229074

    [11]

    CHEN L, JIANG M M, YANG J H, et al. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton[J]. Geology, 2014, 42(3): 223−226. doi: 10.1130/G35010.1

    [12]

    CHEN L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J]. Physics of The Earth and Planetary Interiors, 2009, 173(3): 216−227.

    [13]

    CHEN L, TAO W, ZHAO L, et al. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton[J]. Earth and Planetary Science Letters, 2008, 267: 56−68. doi: 10.1016/j.jpgl.2007.11.024

    [14]

    ZHAO L, ZHENG T Y, CHEN L, et al. Shear wave splitting in Eastern and Central China: Implications for upper mantle deformation beneath continental margin[J]. Physics of The Earth and Planetary Interiors, 2007, 162: 73−84. doi: 10.1016/j.pepi.2007.03.004

    [15]

    ZHENG T Y, ZHU R X, ZHAO L, et al. Intralithospheric mantle structures recorded continental subduction[J]. Journal of Geophysical Research, 2012, 117(B3).

    [16]

    ZHENG T Y, HE Y M, YANG J H, et al. Seismological constraints on the crustal structures generated by continental rejuvenation in Northeastern China[J]. Scientific Reports, 2015, 5(1): 14995. doi: 10.1038/srep14995

    [17]

    FENG M, ASSUMPÇÃO MARCELO S, Van der LEE S. Group-velocity tomography and lithospheric S-velocity structure of the South American continent[J]. Physics of The Earth and Planetary Interiors, 2004, 147(4): 315−331. doi: 10.1016/j.pepi.2004.07.008

    [18] 中国地震科学台阵. 中国地震科学探测台阵波形数据[DB/OL]. 中国地震局, 2006. DOI: 10.12001/ChinArray.Data.

    ChinArray. China seismic array waveform data[DB/OL]. China Earthquake Administration, 2006. DOI://10.12001/ChinArray.Data. (in Chinese).

    [19] 中国地震局地球物理研究所国家测震台网数据备份中心. 地震波形数据[DB/OL]. 中国地震局. DOI: 10.11998/SeisDmc/SN.
    [20]

    TANG Q S, CHEN L. Structure of the crust and uppermost mantle of the Yanshan Belt and adjacent regions at the northeastern boundary of the North China Craton from Rayleigh wave dispersion analysis[J]. Tectonophysics, 2008, 455(1): 43−52.

    [21] 危自根, 陈凌, 杨小林. 辽东台隆、燕山带和兴蒙造山带台站下方地壳厚度和平均波速比(Vp/Vs)的横向变化及其构造意义[J]. 地球物理学报, 2011,54(11): 2799−2808. doi: 10.3969/j.issn.0001-5733.2011.11.010

    WEI Z G, CHEN L, YANG X L. Transverse variations of crustal thickness and VP/VS ratio under the stations in the Liaodong anteclise-Yanshan belt-Xingmeng orogenic belt and their tectonic implications[J]. Chinese Journal of Geophysics, 2011, 54(11): 2799−2808. (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.11.010

    [22]

    ZHANG R Q, WU Q J, SUN L, et al. Crustal and oblithospheric structure of Northeast China from S-wave receiver functions[J]. Earth and Planetary Science Letters, 2014, 401: 196−205. doi: 10.1016/j.jpgl.2014.06.017

    [23] 张广成, 吴庆举, 潘佳铁, 等. 利用H-K叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比[J]. 地球物理学报, 2013,56(12): 4084−4094. DOI: 10.6038/cjg20131213.

    ZHANG G C, WU Q J, PAN J T, et al. Study of crustal structure and Poisson ratio of NE China by H-K stack and CCP stack methods[J]. Chinese Journal of Geophysics, 2013, 56(12): 4084−4094. DOI: 10.6038/cjg20131213. (in Chinese).

    [24]

    TAO K, NIU F L, NING J Y, et al. Crustal structure beneath NE China imaged by NECESSArray receiver function data[J]. Earth and Planetary Science Letters, 2014, 398: 48−57. doi: 10.1016/j.jpgl.2014.04.043

    [25]

    BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239−1260. doi: 10.1111/j.1365-246X.2007.03374.x

    [26]

    HERRMANN R B. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6): 1081−1088. doi: 10.1785/0220110096

    [27]

    SHAPIRO N M, RITZWOLLER M H. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle[J]. Geophysical Journal International, 2002, 151: 88−105. doi: 10.1046/j.1365-246X.2002.01742.x

    [28] 黄忠贤, 李红谊, 胥颐. 南北地震带岩石圈S波速度结构面波层析成像[J]. 地球物理学报, 2013,56(4): 1121−1131. DOI: 10.6038/cjg20130408.

    HUANG Z X, LI H Y, XU Y. Lithospheric S-wave velocity structure of the North-South seismic belt of China from surface wave tomography[J]. Chinese Journal of Geophysics, 2013, 56(4): 1121−1131. DOI: 10.6038/cjg20130408. (in Chinese).

    [29] 苏伟, 彭艳菊, 郑月军, 等. 青藏高原及其邻区地壳上地幔S波速度结构[J]. 地球学报, 2002,23(3): 193−200. doi: 10.3321/j.issn:1006-3021.2002.03.001

    SU W, PENG Y J, ZHENG Y J, et al. Crust and upper mantle shear velocity structure beneath the Tibetan Plateau and adjacent areas[J]. Acta Geoscientica Sinica, 2002, 23(3): 193−200. (in Chinese). doi: 10.3321/j.issn:1006-3021.2002.03.001

    [30]

    LEVENBERG K. A method for the solution of certain nonlinear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2: 164−168. doi: 10.1090/qam/10666

    [31]

    TIKHONOV A N. On the solution of ill-posed problems and the method of regularization[J]. Doklady Akademii Nauk SSSR, 1963, 151(3): 501−504.

    [32]

    FENG M, AN M J. Lithospheric structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities[J]. Journal of Geophysical Research, 2010, 115: B06317.

    [33]

    AN M J, WIENS D A, ZHAO Y, et al. S-velocity model and inferred Moho topography beneath the Antarctic plate from Rayleigh waves[J]. Journal of Geophysical Research, 2015, 120(1): 359−383. doi: 10.1002/2014JB011332

    [34]

    FENG M, AN M J, MECHIE J, et al. Lithospheric structures of and tectonic implications for the central-east Tibetan plateau inferred from joint tomography of receiver functions and surface waves[J]. Geophysical Journal International, 2020, 223(3): 1688−1707. doi: 10.1093/gji/ggaa403

    [35] 冯梅, 安美建. 基于面波频散的三维横波速度方位各向异性层析成像方法[J]. CT理论与应用研究, 2020,29(4): 381−397. DOI: 10.15953/j.1004-4140.2020.29.04.01.

    FENG M, AN M J. Method on 3D tomography of S-wave velocity azimuthal anisotropy by using surface-wave dispersion curves[J]. CT Theory and Applications, 2020, 29(4): 381−397. DOI: 10.15953/j.1004-4140.2020.29.04.01. (in Chinese).

    [36]

    GASS S I, FU M C. Newton’s method[M]. Boston, MA: Encyclopedia of Operations Research and Management Science, Springer US, 2013: 1051-1051.

    [37]

    MOROZOV V A. Methods for solving incorrectly posed problems[M]. New York: Springer-Verlag, 1984: 1-257.

    [38]

    AN M J. Adaptive regularization of the reference model in an inverse problem[J]. Pure and Applied Geophysics, 2020, 177(10): 4943−4956. doi: 10.1007/s00024-020-02530-z

    [39]

    LASKE G, MA Z T, MASTERS G, et al. A new global crustal model at 1×1 degrees[OL]. http://igppweb.ucsd.edu/~gabi/crust1.html, 2012.

    [40]

    KENNETT B L N, ENGDAHL E R. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 1991, 105: 429−465. doi: 10.1111/j.1365-246X.1991.tb06724.x

    [41] 查小惠, 吕坚, 鲍志诚, 等. 接收函数H-k叠加方法研究综述[J]. CT理论与应用研究, 2020,29(3): 369−379. DOI: 10.15953/j.1004-4140.2020.29.03.14.

    ZHA X H, LV J, BAO Z C, et al. A review of H-k stack method of receiver function[J]. CT Theory and Applications, 2020, 29(3): 369−379. DOI: 10.15953/j.1004-4140.2020.29.03.14. (in Chinese).

    [42] 安美建, 冯梅, 赵琳. 地震层析成像中的不确定性[J]. CT理论与应用研究, 2009,18(2): 24−32.

    AN M J, FENG M, ZHAO L. Uncertainties in seismic tomography[J]. CT Theory and Applications, 2009, 18(2): 24−32. (in Chinese).

    [43] 冯梅, 安美建. 反演模型分辨率的估算方法[J]. CT理论与应用研究, 2013,22(4): 587−604. doi: 10.3969/j.issn.1004-4140.2013.04.003

    FENG M, AN M J. How to determine spatial resolution for an inverse problem[J]. CT Theory and Applications, 2013, 22(4): 587−604. (in Chinese). doi: 10.3969/j.issn.1004-4140.2013.04.003

    [44]

    LI Y H, GAO M T, WU Q J. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics, 2014, 611: 51−60. doi: 10.1016/j.tecto.2013.11.019

    [45]

    HE R Z, SHANG X F, YU C Q, et al. A unified map of Moho depth and Vp/Vs ratio of continental China by receiver function analysis[J]. Geophysical Journal International, 2014, 199(3): 1910−1918. doi: 10.1093/gji/ggu365

    [46]

    FENG M, AN M J, DONG S W. Tectonic history of the ordos block and Qinling orogen inferred from crustal thickness[J]. Geophysical Journal International, 2017, 210(1): 303−320. doi: 10.1093/gji/ggx163

    [47]

    FENG M, AN M J, Van der LEE S. Region-related features of crustal and upper-mantle velocity structure of the Chinese mainland detected by surface waveform modeling[J]. Acta Seismologica Sinica, 2008, 21(2): 118−126. doi: 10.1007/s11589-008-0003-0

    [48] 中国地质调查局. 中华人民共和国1︰250万数字地质图说明书[M]. 北京: 中国地图出版社, 2004.

    China Geological Survey. 1︰2 500 000 geological map of China[M]. Beijing: China Cartographic Publishing House, 2004. (in Chinese).

    [49]

    SONG Y, STEPASHKO A, LIU K Y, et al. Post-rift tectonic history of the Songliao basin, NE China: Cooling events and post-rift unconformities driven by orogenic pulses from plate boundaries[J]. Journal of Geophysical Research, 2018, 123(3): 2363−2395. doi: 10.1002/2017JB014741

    [50] 冯梅, 安美建. 中国大陆中上地壳剪切波速结构[J]. 地震学报, 2007,20(4): 359−369. doi: 10.3321/j.issn:0253-3782.2007.04.001

    FENG M, AN M J. Middle and upper crust shear-wave velocity structure of the Chinese mainland[J]. Acta Seismologica Sinica, 2007, 20(4): 359−369. (in Chinese). doi: 10.3321/j.issn:0253-3782.2007.04.001

    [51] 高延光, 李永华. 中国东北-华北地区地壳厚度与泊松比及其地质意义[J]. 地球物理学报, 2014,57(2): 166−176. doi: 10.1002/cjg2.20094

    GAO Y G, LI Y H. Crustal thickness and Vp/Vs in the Northeast China-North China region and its geological implication[J]. Chinese Journal of Geophysics, 2014, 57(2): 166−176. (in Chinese). doi: 10.1002/cjg2.20094

    [52] 张凯文, 陈棋福, 陈赟. 接收函数揭示的兴蒙造山带西南部的地壳结构特征[J]. 地球物理学报, 2020,63(4): 1−21. doi: 10.6038/cjg2020N0048

    ZHANG K W, CHEN Q F, CHEN Y. Crustal structure beneath the southwestern Xing’an-Mongolia orogenic belt revealed by receiver function analysis[J]. Chinese Journal of Geophysics, 2020, 63(4): 1−21. (in Chinese). doi: 10.6038/cjg2020N0048

    [53]

    AN M J, SHI Y L. Lithospheric thickness of the Chinese continent[J]. Physics of The Earth and Planetary Interiors, 2006, 159: 257−266. doi: 10.1016/j.pepi.2006.08.002

    [54]

    HE Y, CHEN Q F, CHEN L, et al. Distinct lithospheric structure in the Xing'an-Mongolian orogenic belt (submitted)[J]. Geophysical Research Letters, 2022.

    [55]

    ENGDAHL E R, Van der HILST R D, BULAND R. Global teleseismic earthquake relocation with improved travel times and procedures for detph determination[J]. Bulletin of the Seismological Society of America, 1998, 88: 722−743.

    [56]

    FREDERIKSEN A W, BOSTOCK M G, CASSIDY J F. S-wave velocity structure of the Canadian upper mantle[J]. Physics of the Earth and Planetary Interiors, 2001, 124: 175−191. doi: 10.1016/S0031-9201(01)00194-7

    [57]

    Van der LEE S. High-resolution estimates of lithosphere thickness from Missouri to Massachusetts, USA[J]. Earth and Planetary Science Letters, 2002, 203: 15−23. doi: 10.1016/S0012-821X(02)00846-4

    [58] 朱介寿, 曹家敏, 蔡学林, 等. 东亚及西太平洋边缘海高分辨率面波层析成像[J]. 地球物理学报, 2002,45(5): 646−664. doi: 10.3321/j.issn:0001-5733.2002.05.007

    ZHU J S, CAO J M, CAI X L, et al. High resolution surface wave tomography in East Asia and West Pacific marginal seas[J]. Chinese Journal of Geophysics, 2002, 45(5): 646−664. (in Chinese). doi: 10.3321/j.issn:0001-5733.2002.05.007

    [59]

    ZHU J S, CAI X L, CAO J M, et al. Lithospheric structure and geodynamics in China and its adjacent areas[J]. Geology in China, 2006, 33(4): 793−802.

    [60]

    HUANG X A, BI Z W, DEPAOLO D J. Sm-Nd isotope study of early Archean rocks, Qianan, Hebei Province, China[J]. Geochimica et Cosmochimica Acta, 1986, 50(4): 625−631. doi: 10.1016/0016-7037(86)90111-0

    [61]

    ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1): 45−73.

  • 期刊类型引用(2)

    1. 宋冉,梁长华,李强. 能谱CT结合血清miR-23a预测大面积急性心肌梗死患者主要心血管不良事件发生风险的价值. 海南医学. 2025(04): 528-533 . 百度学术
    2. 夏宾,叶鹏飞,邵祎炜,李俊杰,李宇庆. 心肌灌注成像联合增强CT评估心肌缺血患者再灌注损伤的价值. 河南医学研究. 2024(03): 550-554 . 百度学术

    其他类型引用(0)

图(6)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-04-09
  • 修回日期:  2022-05-12
  • 录用日期:  2022-05-19
  • 网络出版日期:  2022-07-04
  • 发布日期:  2023-01-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭