ISSN 1004-4140
    CN 11-3017/P

    面向稀疏角CT重建的投影先验引导均值回归扩散桥模型

    Mean-Reverting Diffusion Bridge with Projection Prior for Sparse CT Reconstruction

    • 摘要: 在稀疏视图计算机断层成像(CT)中,投影数据的不完整性常导致重建图像出现伪影、边缘模糊及结构失真等问题。针对这一挑战,本文提出了一种基于 Ornstein–Uhlenbeck(OU)过程的扩散桥模型,用于对投影域缺失数据进行条件填充,实现高质量稀疏重建。该方法利用OU过程的均值回归特性构建物理一致的随机扩散机制,并通过扩散桥约束使采样路径首尾分别固定于重建先验与稀疏投影,实现对缺失投影数据的高保真恢复。同时,在网络结构中引入小波域多尺度特征融合模块,以充分整合低频结构与高频细节信息,从而提升模型对图像细节的重建能力。实验结果表明,在相同稀疏角条件下,本文方法在视觉质量与定量评估指标上均优于现有主流方法,验证了其在稀疏角CT重建任务中的有效性。

       

      Abstract: In sparse-view computed tomography (CT), incomplete projection data often lead to artifacts, edge blurring, and structural distortions in the reconstructed images. To address this challenge, this study proposes a diffusion bridge model based on the Ornstein–Uhlenbeck (OU) process for the conditional completion of missing projection-domain data to enable high-quality sparse-view reconstruction. The proposed method leverages the mean-reverting property of the OU process to establish a physically consistent stochastic diffusion mechanism. The diffusion bridge constraint anchors the sampling trajectory between the reconstruction prior and sparse projections, thereby achieving high-fidelity restoration of the missing data. Furthermore, a multiscale feature fusion module in the wavelet domain is incorporated into the network architecture to effectively integrate low-frequency structural information with high-frequency texture details, thereby enhancing the capability of the model to recover fine image features. Experimental results demonstrate that under the same sparse-view conditions, the proposed method outperforms existing state-of-the-art approaches in terms of both visual quality and quantitative metrics, confirming its effectiveness for sparse-view CT reconstruction tasks.

       

    /

    返回文章
    返回