ISSN 1004-4140
    CN 11-3017/P

    基于深度学习的CT图像金属伪影去除研究进展

    CT Image Metal Artifact Reduction Based on Deep Learning

    • 摘要: 摘要:金属伪影是影响临床CT图像质量与诊断准确性的主要干扰因素,去除CT图像中的金属伪影一直是业界研究的重要方向。近年来,深度学习技术的发展与应用,为CT图像金属伪影去除算法研究开辟了新途径,并涌现出大量优秀成果。本文首先阐述CT图像中金属伪影产生的原因及表现形式,其次从图像域、投影域及双域3个方向,综述近年来深度学习在CT图像金属伪影去除领域中的研究进展,最后对现有方法进行概括总结,并对金属伪影去除的研究前景进行展望。

       

      Abstract: Metal artifacts adversely affect computed tomography (CT) image quality and diagnostic accuracy. Metal-artifact reduction (MAR) in CT images has long been a major focus of research. In recent years, with the advancement and application of deep-learning technologies, new approaches have emerged for research on MAR algorithms, leading to a wealth of outstanding achievements. In this paper, we first introduce the causes and manifestations of metal artifacts in CT images. We then review recent progress in deep-learning-based MAR methods, categorizing them into three approaches: image, projection, and dual domains. Finally, we summarize these methods and discuss future research prospects for MAR technology.

       

    /

    返回文章
    返回