ISSN 1004-4140
CN 11-3017/P

基于多注意力融合增强Restormer的低剂量CT图像重建

Enhanced Restormer for Low-Dose CT Image Reconstruction Based on Multi-Attention Fusion

  • 摘要: 计算机断层成像(CT)技术在医学诊断中起着至关重要的作用。在CT图像重建中保持投影角度数量不变的情况下,降低每个投影角度的辐射剂量,是一种实现低剂量CT的有效方法。这会使得重建出的CT图像中含有较大的噪声,影响后续的图像分析和研究。针对上述问题,提出一种融合多注意力机制和特征融合机制的增强的Restormer网络(ERestormer)用于低剂量CT图像去噪。该网络融合了通道注意力、感受野注意力和多头转置注意力以增强网络对重要信息的关注能力,进而提高网络的特征学习能力。另外,本网络引入特征融合机制来增强编码器和解码器之间的特征复用。实验结果证明,与DNCNN、RED-CNN、UNet、Uformer和Restormer 5种经典的网络相比,所提出的网络具有更好的去噪性能和保留图像细节信息的能力。

     

    Abstract: Computed Tomography (CT) technology plays a crucial role in medical diagnosis. Reducing the radiation dose per projection angle while maintaining a constant number of projection angles is an effective approach to achieving low-dose CT. However, this reduction often introduces significant noise into the reconstructed CT images, adversely affecting subsequent image analysis and research. To address this issue, we propose the Enhanced Restormer for Low-Dose CT Image Reconstruction Based on Multi-Attention Fusion (ERestormer) for low-dose CT image denoising. The network integrates channel attention, receptive field attention, and multi-head transposed attention to enhance the model’s ability to focus on critical information, thereby improving its feature learning capacity. Furthermore, a feature fusion mechanism is introduced to strengthen feature reuse between the encoder and decoder. Experimental results show that the proposed network achieves superior denoising performance and enhanced preservation of image detail when compared to five classical networks: DNCNN, RED-CNN, UNet, Uformer, and Restormer.

     

/

返回文章
返回