ISSN 1004-4140
CN 11-3017/P

基于扩散模型的医学成像研究综述

Diffusion Models in Medical Imaging: A Comprehensive Survey

  • 摘要: 以扩散模型为代表的生成式人工智能近年来在医学成像领域取得了迅猛的进展。为了帮助更多学者全面的了解扩散模型这一先进技术,本文旨在提供扩散模型在医学成像领域的详细概述。具体来说,首先以扩散模型的起源演变为主线介绍了扩散建模框架的基础理论和基本概念。其次根据扩散模型的特点提供了其在医学成像领域的系统分类,并涵盖了不同成像模态如磁共振成像、计算机断层扫描、正电子发射计算机断层显像和光声成像等的广泛应用。最后讨论了目前扩散模型的局限性并展望了未来研究的潜在发展方向,为研究者后续的探索提供了一个直观的起始点。部分代码开源在网址:https://github.com/yqx7150/Diffusion-Models-for-Medical-Imaging

     

    Abstract: Generative artificial intelligence represented by diffusion models has significantly contributed to medical imaging reconstruction. To help researchers comprehensively understand the rich content of diffusion models, this review provides a detailed overview of diffusion models used in medical imaging reconstruction. The theoretical foundation and fundamental concepts underlying the diffusion modeling framework were first introduced, describing their origin and evolution. Second, a systematic characteristic-based taxonomy of diffusion models used in medical imaging reconstruction is provided, broadly covering their application to imaging modalities, including MRI, CT, PET, and PAI. Finally, we discuss the limitations of current diffusion models and anticipate potential directions of future research, providing an intuitive starting point for subsequent exploratory research. Related codes are available at GitHub: https://github.com/yqx7150/Diffusion-Models-for-Medical-Imaging.

     

/

返回文章
返回