ISSN 1004-4140
CN 11-3017/P

足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究

戚荣飞, 姜文龙, 郝芸芸, 杨柳莎, 常英娟, 吴志斌

戚荣飞, 姜文龙, 郝芸芸, 等. 足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究[J]. CT理论与应用研究(中英文), 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.210.
引用本文: 戚荣飞, 姜文龙, 郝芸芸, 等. 足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究[J]. CT理论与应用研究(中英文), 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.210.
QI R F, JIANG W L, HAO Y Y, et al. A Study of Image Quality and Radiation Dose in Lower Extremity Computed Tomography Angiography Using Caudo-cranial Flash Scanning[J]. CT Theory and Applications, 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.210. (in Chinese).
Citation: QI R F, JIANG W L, HAO Y Y, et al. A Study of Image Quality and Radiation Dose in Lower Extremity Computed Tomography Angiography Using Caudo-cranial Flash Scanning[J]. CT Theory and Applications, 2025, 34(3): 1-7. DOI: 10.15953/j.ctta.2024.210. (in Chinese).

足头向Flash扫描对下肢动脉CTA图像质量和辐射剂量的研究

详细信息
    作者简介:

    戚荣飞,男,主管技师,主要从事CT心血管成像及临床应用等方面的研究,E-mail:18710973720@163.com

    通讯作者:

    吴志斌✉,男,副主任技师,主要从事医学影像技术临床应用研究,E-mail:492053424@qq.com

  • 中图分类号: R 144;R 814.4

A Study of Image Quality and Radiation Dose in Lower Extremity Computed Tomography Angiography Using Caudo-cranial Flash Scanning

  • 摘要:

    目的:单源CT头足方向和双源CT足头方向Flash扫描在下肢动脉CTA血管成像中图像质量和辐射剂量的对比研究。方法:对于需行下肢CTA成像检查且怀疑外周闭塞性动脉疾病的患者50名被随机分配到P1组(对照组)或P2组(实验组),P1组采用方案1为单源CT头足方向扫描,P2组采用方案2为双源CT足头方向Flash扫描;客观比较两组血管内CT值、信噪比(SNR)、对比噪声比(CNR),各部位CT值的一致性;主观评估由两名放射科医生对图像质量进行双盲评估;比较CT体积剂量指数(CTDIVOI)和剂量长度乘积(DLP)。结果:P1和P2两组患者主动脉、髂外动脉、腘动脉、胫前动脉处血管内CT值、SNR、CNR均存在统计学差异;股动脉处血管内CT值,SNR、CNR不存在统计学差异;P2组CT值均值高于P1组((534.4±25.2) vs. (480.6±143.4)),且在各部位CT值表现出更好的一致性;主观评价方面P1和P2两组主动脉和膝关节以下动脉图像质量评分存在统计学差异,股腘动脉图像质量评分不存在统计学差异。P2组的辐射剂量明显低于P1组,其中CTDIVOI减少64.0%((0.9±0.3)mGy vs. (2.5±0.3) mGy),DLP减少63.4%((113.5±33.4)mGy·cm vs. (310.1±53.5) mGy·cm)。结论:与单源CT头足向扫描相比,下肢CTA联合双源CT足头向Flash扫描在膝关节以下的小动脉系统中可获得更好的图像质量,具有更高的CT值、SNR、CNR和更好的一致性,并且可降低下肢CTA检查的辐射剂量。

    Abstract:

    Objective: We conducted a comparative study of image quality and radiation dose in CTA angiography of lower extremity arteries with single-source CT cranio-cauda and dual-source CT cranio-cauda Flash scans. Methods: This prospective study enrolled 50 patients with suspected peripheral occlusive arterial disease which required CTA imaging of the lower extremities. Patients were randomly assigned to a control group (P1) or an experimental group (P2). Group P1 was scanned with protocol 1: single-source CT cranio-cauda direction, Group P2 was scanned with protocol 2: dual-source CT cranio-cauda direction Flash. Intravascular CT values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were compared as a group. Image quality was assessed by two radiologists. CT volume dose index (CTDIVOI) and dose length product (DLP) were compared as well. Results: Statistical differences were observed between P1 and P2 groups in intravascular CT values, SNR, and CNR at the aorta, external iliac artery, popliteal artery, and anterior tibial artery. No statistically significant difference was seen in intravascular CT values, SNR, or CNR at the femoral artery. The mean intravascular CT value in the P2 group was higher than that in the P1 group ((534.4±25.2) vs. (480.6±143.4)), and showed better consistency in each part. In the subjective evaluation, significant differences were found in image quality scores for the aorta and inferior knee arteries between P1 and P2 groups, but no significant differences between groups were found in image quality scores for the femoral artery and popliteal artery The radiation dose in the P2 group was significantly lower than that in the P1 group, including a 64.0% reduction in CTDIvol ((0.9±0.3) mGy to (0.5±0.3) mGy) and a 63.4% reduction in DLP ((113.5±33.4) mGy·cm to (310.1±53.5) mGy·cm). Conclusion: Lower extremity CTA combined with dual-source CT caudo-cranial Flash scanning yields better quality images in the small arterial system below the knee with higher CT values, SNR, and CNR, and better consistency than single-source CT cranio-cauda scanning. This method also reduces the radiation dose for lower extremity CTA examinations.

  • 图  1   女,78 岁,不同扫描方案的下肢 CTA 影像

    Figure  1.   Female, 78 years old, lower extremity CTA images using different scanning

    图  2   两组扫描方案各部位CT值

    Figure  2.   Sums of CT values for each part of two groups

    表  1   主观评分评价标准

    Table  1   Subjective evaluation criteria

    评分 评分标准
    差(1分)  各部分动脉均显示不佳,CT值在200 HU以下,提供的影像学信息十分有限导致无法诊断
    较差(2分) 部分小动脉显示不佳,CT值在250 HU以下,提供的影像学信息有限导致不能全面诊断
    较好(3分) 各部分动脉显示较清晰,CT值在250-300 HU以上,可提供较为充分的影像学诊断信息
    良好(4分) 各部分动脉显示清晰,CT值在300 HU以上,可提供充足的影像学诊断信息
    极好(5分) 各部分动脉显示清晰,CT值在350 HU以上,为影像学诊断提供了最佳信息
    下载: 导出CSV

    表  2   两组人群一般资料对比

    Table  2   Comparison of general information between two groups

    项目 组别 统计检验
    P1 P2 t/F P
    年龄/岁        62.2±14.8 62.9±13.8 0.2 0.879
    性别/(男/女)      16/5 25/4 0.3 0.591
    体重指数BMI/(kg/m2 3.4±1.1 23.2±1.2 0.7 0.471
    下载: 导出CSV

    表  3   两组影像不同部位的主观评价

    Table  3   Subjective evaluation of different features in two sets of images

    部位 组别 统计检验 Kappa值
    P1 P2 t P
    主/髂外动脉   4.7±0.5 4.4±0.5 2.4 0.019 0.841
    股/腘动脉    4.8±0.4 4.6±0.5 1.6 0.123 0.915
    膝关节以下动脉 3.3±0.6 4.5±0.5 7.7 <0.001 0.878
    下载: 导出CSV

    表  4   两组影像不同部位的客观评价

    Table  4   Objective evaluation of different features in two sets of images

    部位 评价参数 组别 统计检验
    P1 P2 t P
    主动脉  CT值 622.5±65.8 505.2±179.6 3.2 0.003
    SNR 77.1±20.0 46.3±17.2 5.8 <0.001
    CNR 69.9±18.8 41.0±17.1 5.7 <0.001
    髂外动脉 CT值 588.4±82.9 508.5±164.2 2.3 0.029
    SNR 71.3±21.7 47.4±17.8 4.3 <0.001
    CNR 64.5±19.4 41.9±17.7 4.3 <0.001
    股动脉  CT值 535.9±83.7 553.6±117.9 0.6 0.540
    SNR 58.5±22.4 56.1±16.4 0.4 0.662
    CNR 52.5±20.7 50.6±16.0 0.4 0.718
    腘动脉  CT值 349.0±63.2 554.4±123.2 7.7 <0.001
    SNR 50.6±13.7 65.8±26.2 2.7 0.011
    CNR 41.3±10.4 58.0±24.4 3.3 0.002
    胫前动脉 CT值 307.0±65.8 550.1±94.4 10.7 <0.001
    SNR 41.9±18.3 63.8±28.9 3.1 0.004
    CNR 33.4±15.6 56.4±26.9 3.5 0.001
    下载: 导出CSV

    表  5   两组扫描方案辐射剂量对比

    Table  5   Comparison of radiation dosage between two scanning programs

    辐射剂量 组别 统计检验
    P1 P2 t P
    CTDIVOI 72.5±0.3 0.9±0.3 18.1 <0.001
    DLP 310.1±53.5 113.5±33.4 14.9 <0.001
    下载: 导出CSV
  • [1]

    MCDERMOTT M M. The magnitude of the problem of peripheral arterial disease: Epidemiology and clinical significance[J]. Cleveland Clinic Journal of Medicine, 2006, 73(S4): S2-S7.

    [2]

    MARGOLIS J, BARRON J J, GROCHULSKI W D. Health care resources and costs for treating peripheral artery disease in a managed care population: Results from analysis of administrative claims data[J]. Journal of Managed Care Pharmacy, 2005, 11(9): 727-734. DOI: 10.18553/jmcp.2005.11.9.727.

    [3]

    HEIJENBROK-KAL M H, KOCK M C, HUNINK M G. Lower extremity arterial disease: Multidetector CT angiography meta-analysis[J]. Radiology, 2007, 245(2): 433-439. DOI: 10.1148/radiol.2451061280. (in Chinese).

    [4] 中华医学会放射学分会, 下肢动脉CTA扫描技术专家共识协作组, 金征宇. 下肢动脉CT血管成像扫 描技术专家共识[J]. 中华放射学杂志, 2019, 53(2): 88-92. DOI: 10.3760/cma.j.issn.1005-1201.2019.02.002.

    Chinese Society of Radiology C M A, Lower Limb Artery CTA Scanning Technology Expert Consensus Collaboration Group, JIN Z Y. Expert consensus of lower extremity CT angiography[J]. Chinese Journal of Radiology, 2019, 53(2): 88-92. DOI: 10.3760/cma.j.issn.1005-1201.2019.02.002. (in Chinese).

    [5]

    RUBIN G D, SCHMIDT A J, LOGAN L J, et al. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: Initial experience[J]. Radiology, 2001, 221(1): 146-158. DOI: 10.1148/radiol.2211001325.

    [6]

    SIRIAPISITH T, WASINRAT J, MUTIRANGURA P, et al. Optimization of the table speed of lower extremity CT angiography protocols in different patient age groups[J]. Journal of Cardiovascular Computed Tomography, 2010, 4(3): 173-183. DOI: 10.1016/j.jcct.2010.03.011.

    [7]

    WINTERSPERGER B, JAKOBS T, HERZOG P, et al. Aorto-iliac multidetector-row CT angiography with low kV settings: Improved vessel enhancement and simultaneous reduction of radiation dose[J]. European Radiology, 2005, 15(2): 334-341. DOI: 10.1007/s00330-004-2575-y.

    [8] 朱蕾, 牛延涛, 张永县, 等. 不同迭代重建算法在眼眶CT中的适用性研究[J]. CT理论与应用研究(中英文), 2024, 33(4): 487-496. DOI: 10.15953/j.ctta.2024.045.

    ZHU L, NIU Y T, ZHANG Y X, et al. Applicability of different iterative reconstruction algorithms in orbital computed tomography[J]. CT Theory and Applications, 2024, 33(4): 487-496. DOI: 10.15953/j.ctta.2024.045. (in Chinese).

    [9]

    LIU B, GAO S, CHANG Z, et al. Lower extremity CT angiography at 80 kVp using iterative model reconstruction[J]. Diagnostic and Interventional Imaging, 2018, 99(9): 561-568. DOI: 10.1016/j.diii.2018.04.006.

    [10]

    OFER A, NITECKI S S, LINN S, et al. Multidetector CT angiography of peripheral vascular disease: A prospective comparison with intraarterial digital subtraction angiography[J]. American Journal of Roentgenology, 2003, 180(3): 719-724. DOI: 10.2214/ajr.180.3.1800719.

    [11]

    QANADLI S D, CHIAPPORI V, KELEKIS A. Multislice computed tomography of peripheral arterial disease: New approach to optimize vascular opacification with 16-row platform[J]. European Radiology, 2004, 14(S2): b806.

    [12]

    WILLMANN J K, MAYER D, BANYAI M, et al. Evaluation of peripheral arterial bypass grafts with multi-detector row CT angiography: Comparison with duplex US and digital subtraction angiography[J]. Radiology, 2003, 229(2): 465-474. DOI: 10.1148/radiol.2292021123.

    [13]

    BRUDER H, PETERSILKA M, MEHLDAU H, et al. Flash imaging in dual source CT (DSCT)[C]//SPIE Medical Imaging, Florida, United States, 2009: 138-148.

    [14]

    MEYER M, HAUBENREISSER H, SCHOEPF U J, et al. Closing in on the K edge: Coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system[J]. Radiology, 2014, 273(2): 373-382. DOI: 10.1148/radiol.14140244.

    [15]

    BUI T D, GELFAND D, WHIPPLE S, et al. Comparison of CT and catheter arteriography for evaluation of peripheral arterial disease[J]. Vascular and Endovascular Surgery, 2005, 39(6): 481-490. DOI: 10.1177/153857440503900604.

    [16]

    POLLAK A W, NORTON P T, KRAMER C M. Multimodality imaging of lower extremity peripheral arterial disease: current role and future directions[J]. Circulation Cardiovascular imaging, 2012, 5(6): 797-807. DOI: 10.1161/CIRCIMAGING.111.970814.

    [17]

    MET R, BIPAT S, LEGEMATE D A, et al. Diagnostic performance of computed tomography angiography in peripheral arterial disease: A systematic review and meta-analysis[J]. Journal of the American Medical Association, 2009, 301(4): 415-424. DOI: 10.1001/jama.301.4.415.

    [18]

    KOCK M C, ADRIAENSEN M E, PATTYNAMA P M, et al. DSA versus multi-detector row CT angiography in peripheral arterial disease: Randomized controlled trial[J]. Radiology, 2005, 237(2): 727-737. DOI: 10.1148/radiol.2372040616.

    [19]

    FLEISCHMANN D. CT angiography: Injection and acquisition technique[J]. Radiologic Clinics of North America, 2010, 48(2): 237-247. DOI: 10.1016/j.rcl.2010.02.002.

    [20]

    LESCHKA S, STOLZMANN P, SCHMID F T, et al. Low kilovoltage cardiac dual-source CT: Attenuation, noise, and radiation dose[J]. European Radiology, 2008, 18(9): 1809-1817. DOI: 10.1007/s00330-008-0966-1.

    [21]

    LAYRITZ C, MUSCHIOL G, FLOHR T, et al. Automated attenuation-based selection of tube voltage and tube current for coronary CT angiography: Reduction of radiation exposure versus a BMI-based strategy with an expert investigator[J]. Journal of Cardiovascular Computed Tomography, 2013, 7(5): 303-310. DOI: 10.1016/j.jcct.2013.08.010.

    [22]

    MOSCARIELLO A, TAKX R A, SCHOEPF U J, et al. Coronary CT angiography: Image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection[J]. European Radiology, 2011, 21(10): 2130-2138. DOI: 10.1007/s00330-011-2164-9.

    [23]

    OTA H, TAKASE K, RIKIMARU H, et al. Quantitative vascular measurements in arterial occlusive disease[J]. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 2005, 25(5): 1141-1158. DOI: 10.1148/rg.255055014.

    [24]

    de ZORDO T, Von LUTTEROTTI K, DEJACO C, et al. Comparison of image quality and radiation dose of different pulmonary CTA protocols on a 128-slice CT: High-pitch dual source CT, dual energy CT and conventional spiral CT[J]. European Radiology, 2012, 22(2): 279-286. DOI: 10.1007/s00330-011-2251-y.

    [25]

    QI L, MEINEL F G, ZHOU C S, et al. Image quality and radiation dose of lower extremity CT angiography using 70 kVp, high pitch acquisition and sinogram-affirmed iterative reconstruction[J]. PloS One, 2014, 9(6): e99112. DOI: 10.1371/journal.pone.0099112.

    [26]

    QI L, ZHAO Y, ZHOU C S, et al. Image quality and radiation dose of lower extremity CT angiography at 70 kVp on an integrated circuit detector dual-source computed tomography[J]. Acta Radiologica, 2015, 56(6): 659-665. DOI: 10.1177/0284185114535391.

图(2)  /  表(5)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  5
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25
  • 修回日期:  2024-11-28
  • 录用日期:  2024-11-29
  • 网络出版日期:  2024-12-09

目录

    /

    返回文章
    返回
    x 关闭 永久关闭