Abstract:
Electrical resistivity tomography is a popular geophysical method and has been applied in shallow exploration, involving hydrology, archaeology, and geology, in recent years. To enhance the resolution of electrical resistivity tomography and deal with complex geological settings, we propose the weighted combined inversion of different electrode arrays based on the Jacobian matrix, and then, taking Wenner and dipole-dipole datasets as examples, test its effectiveness on synthetic models and a field case of detecting ancient mausoleum. The results show that the resolution of the weighted combined inversion results is superior to that of a single electrode array in transverse and longitudinal directions, and in the field case, it is demonstrated that the weighted combined inversion algorithm can alleviate the inherent defects of U-shaped electrode array, reduce the ambiguity of inversion, and better constrain the width of the mausoleum.