Denoising of Seismic Data Based on Block Dictionary Learning Theory
-
摘要: 随着油气勘探观测环境愈发复杂,采集的地震数据常常掺杂各种噪声信号,导致勘探目标引起的有效微弱信号被覆盖,严重影响高精度的地震勘探数据解译,因而有效的压制地震勘探数据噪声显得越发重要。本文采用字典学习策略,将复杂地震数据进行分块,通过分块数据的字典学习获取字典原子,构建高精度的字典学习地震数据稀疏表示,通过两次迭代更新字典原子,进行数据去噪。将本文的字典学习算法应用于含随机噪声的模拟数据和实测地震勘探数据处理,验证该算法的可行性及有效性。结果表明,本文算法有效去除了随机噪声,保留了有效信号同相轴,提高了信噪比,可为复杂含噪地震数据的去噪处理提供新的技术手段。Abstract: With the increasingly complex observation environment of oil and gas exploration, the seismic data collected are often mixed with various noise signals, resulting in the effective weak signal caused by the exploration target is covered, which seriously affects the high-precision seismic data interpretation, so it is more and more important to effectively suppress the seismic data noise. In this paper, the dictionary learning strategy is used to block the complex seismic data. The dictionary atoms are obtained through the dictionary learning of the block data, and the sparse representation of the seismic data is constructed by high-precision dictionary learning. The dictionary atoms are updated through two iterations for data denoising. The dictionary learning algorithm is applied to the processing of simulated and measured seismic data with random noise. The analysis results show that the algorithm can effectively removes the random noise while retains the effective signal phase axis, improves the signal-to-noise ratio which verifies the feasibility and effectiveness of the algorithm. The research results provide a new technical means for complex noisy seismic data denoising.
-
-
表 1 不同模拟数据去噪前后信噪比与运行时间
Table 1 SNR and running time of different analog data before and after denoising
类型 去噪前信噪比/dB 去噪后信噪比/dB 运行时间/s Data 1 3.539 17.436 30.2 Data 2 2.909 18.553 26.1 Data 3 3.089 18.326 28.2 Data 4 2.883 16.618 32.9 -
[1] 王高成, 刘浩杰, 杨宏伟, 等. 一种有效的转换波去噪方法[J]. 地球物理学进展, 2021,36(6): 2588−2598. doi: 10.6038/pg2021EE0587 WANG G C, LIU H J, YANG H W, et al. One good denoising method of converted wave[J]. Progress in Geophysics, 2021, 36(6): 2588−2598. (in Chinese). doi: 10.6038/pg2021EE0587
[2] 姜占东, 范彩伟, 黎孝璋, 等. 多道奇异谱分析压制强振幅窄带随机噪声研究[J]. 地球物理学进展, 2021,36(2): 730−735. doi: 10.6038/pg2021EE0116 JIANG Z D, FAN C W, LI X Z, et al. Study on suppressing strong amplitude narrow band random noise based on multichannel singular spectrum analysis[J]. Progress in Geophysics, 2021, 36(2): 730−735. (in Chinese). doi: 10.6038/pg2021EE0116
[3] 高好天, 孙宁娜, 孙可奕, 等. DnCNN和U-Net对地震随机噪声压制的对比分析[J]. 地球物理学进展, 2021,36(6): 2441−2453. doi: 10.6038/pg2021EE0473 GAO H T, SUN N N, SUN K Y, et al. Comparative analysis of DnCNN and U-Net on suppression of seismic random noise[J]. Progress in Geophysics, 2021, 36(6): 2441−2453. (in Chinese). doi: 10.6038/pg2021EE0473
[4] 李光辉, 张子豪, 李佳蓉. 基于自适应小波神经网络在压制地震勘探低频噪声中的应用[J]. 测试技术学报, 2021,35(3): 185−189, 204. DOI: 10.3969/j.issn.1671-7449.2021.03.001. LI G H, ZHANG Z H, LI J R. An applied on low-frequency noise suppression of seismic exploration based on adaptive WNN[J]. Journal of Test and Measurement Technology, 2021, 35(3): 185−189, 204. DOI: 10.3969/j.issn.1671-7449.2021.03.001. (in Chinese).
[5] 贺月, 柳建新, 王显莹, 等. 基于自适应字典学习的插值去噪的应用[J]. 地球物理学进展, 2021,36(6): 2454−2461. doi: 10.6038/pg2021EE0480 HE Y, LIU J X, WANG X Y, et al. Application of interpolation denoising based on adaptive dictionary learning[J]. Progress in Geophysics, 2021, 36(6): 2454−2461. (in Chinese). doi: 10.6038/pg2021EE0480
[6] 练秋生, 石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展[J]. 自动化学报, 2015,41(2): 240−260. LIAN Q S, SHI B S, CHEN S Z. Research advances on dictionary learning models, algorithms and applications[J]. Acta Automatica Sinica, 2015, 41(2): 240−260. (in Chinese).
[7] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129−159. doi: 10.1137/S003614450037906X
[8] OLSHAUSEN B A, MILLMAN K J. Learning sparse overcomplete image representations[C]//Wavelet Applications in Signal and Image Processing VIII, International Society for Optics and Photonics. 2000, 4119: 445-452.
[9] AHARONM M, ELAD M, BRUCKSTEIN A. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311−4322. doi: 10.1109/TSP.2006.881199
[10] TANG G, MA J W, YANG H Z. Seismic data denoising based on learning-type overcomplete dictionaries[J]. Applied Geophysics, 2012, 9(1): 27−32. doi: 10.1007/s11770-012-0310-z
[11] SIMON B, MA J W. Simultaneous dictionary learning and denoising for seismic data[J]. Geophysics, 2014, 79(3): A27−A31. doi: 10.1190/geo2013-0382.1
[12] 周艳辉, 高静怀, 陈文超. 基于稀疏表示的多震源混合地震记录分离方法研究[C]//中国石油学会物探技术研讨会论文集, 2015: 165-168. [13] 许德鑫. 基于稀疏表示和字典学习的地震数据去噪研究[D]. 长春: 吉林大学, 2016. XU D X. Research on seismic denoising based on the sparse representation and dictionary learning[D]. Changchun: Jilin University, 2016. (in Chinese).
[14] 张成. 基于K均值序贯泛化(SGK)的二维地震信号重建与去噪研究[D]. 天津: 河北工业大学, 2016. ZHANG C. Study on reconstruction and denoising of two-demensional seismic signal based on sequential generalization of K-means[D]. Tianjin: Hebei University of Technology, 2016. (in Chinese).
[15] 屈光中. 基于稀疏表示的地震信号随机噪声压制与面波分离[D]. 合肥: 合肥工业大学, 2016. QU G Z. The suppression of random noise and separation of ground roll in seismic signals based on sparse representation[D]. Hefei: Hefei University of Technology, 2016. (in Chinese).
[16] 张岩, 任伟建, 唐国维. 利用多道相似组稀疏表示方法压制随机噪声[J]. 石油地球物理勘探, 2017,52(3): 442−450. DOI: 10.13810/j.cnki.issn.1000-7210.2017.03.005. ZHANG Y, REN W J, TANG G W. Random noise suppression based on sparse representation of multi-trace similarity group[J]. Oil Geophysical Prospecting, 2017, 52(3): 442−450. DOI: 10.13810/j.cnki.issn.1000-7210.2017.03.005. (in Chinese).
[17] 王惠迎, 陈昕, 陈建友, 等. 基于自适应学习字典分类的地震数据谐波噪声压制方法[C]//国际地球物理会议暨展览电子论文集, 2018: 438-441. [18] 王量, 买皓, 李勇. 基于在线字典学习算法的地震数据去噪应用[J]. 断块油气田, 2019,26(2): 177−180. DOI: 10.6056/dkyqt201902009. WANG L, MAI H, LI Y. Application of seismic data denoising based on online dictionary learning algorithm[J]. Fault-Block & Gas Field, 2019, 26(2): 177−180. DOI: 10.6056/dkyqt201902009. (in Chinese).
[19] 秦娜. 基于稀疏表示的航空磁测数据处理技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. QIN N. Research on aeromagnetic data processing based on sparse representation[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese).
-
期刊类型引用(1)
1. 曾志斌,沈比先,高德宏,陈胜基,候刚强,钟文新. 3T磁共振容积成像对经皮冠状动脉介入治疗术前、术后心脏结构及心肌功能的评价. 中国医学工程. 2018(06): 59-61 . 百度学术
其他类型引用(0)