ISSN 1004-4140
CN 11-3017/P

AI在双源CT不同管电压下对肺结节的检测效能

朱丽娟, 朱晓明, 宋冬冬, 张清, 吴非

朱丽娟, 朱晓明, 宋冬冬, 张清, 吴非. AI在双源CT不同管电压下对肺结节的检测效能[J]. CT理论与应用研究, 2021, 30(4): 495-502. DOI: 10.15953/j.1004-4140.2021.30.04.10
引用本文: 朱丽娟, 朱晓明, 宋冬冬, 张清, 吴非. AI在双源CT不同管电压下对肺结节的检测效能[J]. CT理论与应用研究, 2021, 30(4): 495-502. DOI: 10.15953/j.1004-4140.2021.30.04.10
ZHU Lijuan, ZHU Xiaoming, SONG Dongdong, ZHANG Qing, WU Fei. AI Detection Efficiency of Pulmonary Nodules Under Dual-source CT with Different Tube Voltages[J]. CT Theory and Applications, 2021, 30(4): 495-502. DOI: 10.15953/j.1004-4140.2021.30.04.10
Citation: ZHU Lijuan, ZHU Xiaoming, SONG Dongdong, ZHANG Qing, WU Fei. AI Detection Efficiency of Pulmonary Nodules Under Dual-source CT with Different Tube Voltages[J]. CT Theory and Applications, 2021, 30(4): 495-502. DOI: 10.15953/j.1004-4140.2021.30.04.10

AI在双源CT不同管电压下对肺结节的检测效能

详细信息
    作者简介:

    朱丽娟,女,大连医科大学研究生,研究方向为胸部影像学,E-mail:118842664367@163.com;吴非*,男,大连大学附属中山医院结石科主任,主任医师,放射诊断学教研室主任,中国医科大学和大连医科大学兼职教授,E-mail:wufei.0348@126.com。

  • 中图分类号: TP18;R814

AI Detection Efficiency of Pulmonary Nodules Under Dual-source CT with Different Tube Voltages

  • 摘要: 目的:探讨人工智能辅助诊断系统在双源CT不同管电压下对肺结节的检测效能。方法:回顾性的搜集行双源CT的门诊患者200例,经排除最终筛选得到198例符合标准的图像,将图像进行后处理,得到100kVp,融合120kVp和140kVp下的胸部CT图像;根据结节大小、密度及位置分组,比较在不同管电压下人工智能检测肺结节的假阳性与假阴性个数。结果:AI在双源CT 100kVp下对于磨玻璃结节具有较好的分辨能力;在双源CT融合120kVp图像中,对肺结节的误诊率最高,但具有较低的漏诊率;然而,在双源CT 140kVp下对肺结节自动检出效能最差。结论:人工智能在融合120kVp下对肺结节的检测的假阴性率较低,可以降低医师诊断肺结节的漏诊率。
    Abstract: Objective: To explore the detection of misdiagnosis and missed pulmonary nodules by artificial intelligence assisted diagnosis system under dual-source CT with different tube voltages. Methods: a retrospective collection of 200 outpatient patients who underwent dual-source CT was conducted. Images were screened and 198 qualified images were finally obtained. The images were post-processed to obtain chest CT images under 100kVp, 120kVp and 140kVp. The number of false positives and false negatives of pulmonary nodules detected by artificial intelligence under different tube voltages were compared according to the size, density and location of the nodules. Results: AI had better resolution ability for ground glass nodule under dual-source CT 100kVp. In the dual-source CT fusion image of 120kVp, the misdiagnosis rate of pulmonary nodules was the highest, but the rate of missed diagnosis was lower. However, the automatic detection of pulmonary nodules was the least effective under dual-source CT 140kVp. Conclusion: The false negative rate of artificial intelligence detection of pulmonary nodules under 120kVp fusion is low, which can reduce the rate of missed diagnosis of pulmonary nodules by physicians.
  • [1]

    GIGER M L, CHAN H P, BOONE J. Anniversary paper:History and status of CAD and quantitative image analysis:The role of Medical Physics and AAPM[J]. Medical Physics, 2008, 35(12):5799-5820.

    [2]

    KERLIKOWSKE K, CARNEY P A, GELLER B, et al. Performance of screening mammography among women with and without a first-degree relative with breast cancer[J]. Annals of Internal Medicine, 2000, 133(11):855-883.

    [3]

    MOLLURAD J, AZENE E M, STARIKOVSKY A, et al. Lewin, White paper report of the RAD-AID conference on international radiology for developing countries:Identifying challenges, opportunities, and strategies for imaging services in the developing world[J]. Journal of the American College of Radiology, JACR 7, 2010:495-500.

    [4]

    GUILLAUME C, MARIA V, NIKOS P, et al, Artificial intelligence applications for thoracic imaging[J]. European Journal of Radiology, 2020, 123:108774. DOI: 10.1016/j.ejrad.2019.108774.

    [5] 周瑞泉, 纪洪辰, 刘荣. 智能医学影像识别研究现状与展望[J]. 第二军医大学报, 2018, 39(8):917-922.

    ZHOU R Q, JI H C, LIU R. Intelligent medical image recognition:Progress and prospect[J]. Academic Joumal of Second Military Medical University, 2018, 39(8):917-922. (in Chinese).

    [6]

    LIU S R, LIU H B, LI P P, et al. Application of high-resolution CT images information in complicated infection of lung tumors[J]. Journal of Infection and Public Health, 2019, S1876-0341(19):30267-30269. DOI: 10.1016/j.jiph.2019.08.001.

    [7] 彭盛坤, 赵原, 蒲红. 不同成像参数与肺部结节CT图像质量及辐射剂量的相关性研究[J]. 中国循证医学杂志, 2019, (10):1158-1162. PENG S K, ZHAO Y, PU H. Study of the correlation between CT image quality and radiation doses of lung nodules with different scanning parameters[J]. Chinese Journal of Evidence-Based Medicine, 2019

    , (10):1158-1162. (in Chinese).

    [8] 中国食品药品检定研究院, 中华医学会放射学分会心胸学组. 胸部CT肺结节数据标注与质量控制专家共识(2018)[J]. 中华放射学杂志, 2019, 53(1):9-15.

    National Institutes for Food and Drug Control, Cardio-thoracic Working Group. Expert consensus on the rule and quality control of pulmonary nodule annotation based on thoracic CT(2018)[J]. Chinese Journal of Radiology, 2019, 53(1):9-15. (in Chinese).

    [9] 春全, 崔永. 肺结节评估四大指南比较分析[J]. 中国肺癌杂志, 2017, 20(7):490-498.

    LIU C Q, CUI Y, Lung nodules assessment——analysis of four guidelines[J]. Chinese Journal of Lung Cancer, 2017, 20(7):490-498. (in Chinese).

    [10]

    TSUTANI Y, MIYATA Y, NAKAYAMA H, et al. Prognostic significance of using solid versus whole tumor size on high-resolution computed tomography for predicting pathologic malignant grade of tumors in clinical stage IA lung adenocarcinoma:A multicenter study[J]. Journal of Thoracic and Cardiovascular Surgery, 2012, 143(3):607-612.

    [11]

    LEE H J, GOO J M, LEE C H, et al. Nodular ground-glass opacities on thin-section CT:Size change during follow-up and pathological results[J]. Korean Journal of Radiology, 2007, 8(1):22-31.

    [12] 刘聪, 殷保才, 严峻. 人工智能在医疗肺结节检测领域的实践[J]. 信息技术与标准化, 2017, 395(11):32-33.
    [13]

    TARTAR A, AKAN A, KILIC N. A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, (36):4651-4654.

    [14]

    SONG Q Z, ZHAO L, LUO X K, et al. Using deep learning for classification of lung nodules on computed tomography images[J]. Journal of Healthcare Engineering, 2017:8314740.

    [15]

    LI W, CAO P, ZHAO D Z, et al. Pulmonary nodule classification with deep convolutional neural networks on computed tomography images[J]. Computational and Mathematical Methods in Medicine, 2016:6215085.

    [16]

    GINNEKEN V B. Fifty years of computer analysis in chest imaging:Rule-based, machine learning, deep learning[J]. Radiological Physics and Technology, 2017, 10(1):23-32.

    [17]

    NIBALI A, HE Z, WOLLERSHEIM D. Pulmonary nodule classification with deep residual networks[J]. International Journal of Computer Assisted Radiology, 2017, 12(10):1799-1808.

    [18]

    HUSSEIN S, GILLIES R, CAO K, et al. TumorNet:Lung nodule characterization using multi-view convolutional neural network with gaussian process[C]//2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, 2017:1007-1010.

    [19]

    CHIRO G D, BROOKS R A, KESSLER R M, et al. Tissue signatures with dual-energy computed tomography[J]. Radiology, 1979, 131(2):521-523.

    [20] 郑玉荣. 双源CT双能量融合技术对肺栓塞的临床诊断价值[D]. 兰州:兰州大学, 2016.
    [21] 张宗军, 卢光明. 双源CT原理及其临床应用[J]. 医疗卫生装备, 2007, 28(10):57-58.

    ZHANG Z J,LU G M. Dual source computed tomography and its clinical application[J]. Chinese Medical Equipment Journal, 2007, 28(10):57-58. (in Chinese).

    [22] 杨柳, 龚明福, 刘云, 等. 双源CT低剂量扫描显示磨玻璃结节对早期肺癌诊断的价值[J].中华肺部疾病杂志(电子版), 2016, (9):551.
  • 期刊类型引用(3)

    1. 江楠,杨洋,李刚锋,屈晓艳,张亚斌,陈寒,崔光彬. 双能量CT在孤立性肺结节诊断中的研究进展. CT理论与应用研究. 2024(06): 733-739 . 本站查看
    2. 黄彬鸿,林家乐,林平,陈嘉欣,郑志文,黎杰盛,林英权. 应用双源CT物质分离技术探讨绝经后女性骨钙浓度与骨质疏松以及腰椎骨折的相关性. 影像研究与医学应用. 2022(03): 32-34 . 百度学术
    3. 程保国,李卫星. 双源CT双能量碘图成像对孤立性肺结节诊断价值分析. 社区医学杂志. 2022(18): 1027-1031 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  221
  • HTML全文浏览量:  11
  • PDF下载量:  11
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-12-24
  • 网络出版日期:  2021-09-23

目录

    /

    返回文章
    返回
    x 关闭 永久关闭