ISSN 1004-4140
CN 11-3017/P

基于U型网络的X线头影图像特征点自动定位

肖贺, 戴修斌

肖贺, 戴修斌. 基于U型网络的X线头影图像特征点自动定位[J]. CT理论与应用研究, 2021, 30(4): 437-446. DOI: 10.15953/j.1004-4140.2021.30.04.04
引用本文: 肖贺, 戴修斌. 基于U型网络的X线头影图像特征点自动定位[J]. CT理论与应用研究, 2021, 30(4): 437-446. DOI: 10.15953/j.1004-4140.2021.30.04.04
XIAO He, DAI Xiubin. Automatical Localization of X-ray Cephalometric Images Landmarks via U-type Network[J]. CT Theory and Applications, 2021, 30(4): 437-446. DOI: 10.15953/j.1004-4140.2021.30.04.04
Citation: XIAO He, DAI Xiubin. Automatical Localization of X-ray Cephalometric Images Landmarks via U-type Network[J]. CT Theory and Applications, 2021, 30(4): 437-446. DOI: 10.15953/j.1004-4140.2021.30.04.04

基于U型网络的X线头影图像特征点自动定位

基金项目: 

国家自然科学基金(个体与群体投影数据混合条件下基于多层次渐进学习的有限角度CT图像重建研究(31671006))。

详细信息
    作者简介:

    肖贺,南京邮电大学硕士研究生,研究方向为医学图像处理,E-mail:1218012330@njupt.edu.cn;戴修斌*,博士,南京邮电大学副教授,研究方向为医学图像处理、模式识别,E-mail:daixb@njupt.edu.cn。

  • 中图分类号: TP183

Automatical Localization of X-ray Cephalometric Images Landmarks via U-type Network

  • 摘要: 为了提高口腔临床诊断效率,提出一种基于U型生成对抗网络的X线头影测量图像结构特征点自动定位方法。该方法在生成对抗网络框架下构建U型生成器网络,用于学习从当前图像到目标特征点偏移距离图的映射;再构建鉴别器网络以判断预测的偏移距离图是否与真实数据一致。将新采集的X线头影测量图像作为已训练的U型生成器网络输入,得到新图像针对目标特征点的偏移距离图,然后通过回归投票方法从预测出的偏移距离图中获得检测目标特征点坐标。实验结果表明,该方法相较于其他方法具有更高的检测成功率,能较准确地获得X线头影测量图像中结构特征点的位置。
    Abstract: In order to improve the efficiency of oral clinical diagnosis, this paper proposes an automatic location method for structural feature points of X-ray cephalometric images based on U-type generative network. This method constructs a U-type generator network under the framework of a generative adversarial network to learn the mapping from the current image to the target landmark offset distance map; then builds a discriminator network to determine whether the predicted offset distance map is consistent with the real data. That is to say, in this paper, image is the output of the U-type generating adversarial network, rather than the common output displacement or coordinate value. The newly acquired X-ray cephalometric image is used as the input of the trained U-type generator network to obtain the offset distance map of the new image to the target feature point, and then the detection is obtained from the predicted offset distance map through the regression voting method Target feature point coordinates. The experimental results show that the method in this paper gets higher detection rate than others,and it can accurately obtain the position of the structural feature points in the X-ray cephalometric image.
  • [1]

    LEONARDI R, GIORDANO D, MAIORANA F, et al. Automatic cephalometric analysis[J]. The Angle Orthodontist, 2008, 78(1):145-151.

    [2]

    BILICI S, YIGIT O, CELEBI O O, et al. Relations between hyoid-related cephalometric measurements andseverity of obstructive sleep apnea[J]. The Journal of craniofacial surgery, 2018, 29(5):1276-1281.

    [3]

    NANDA R S, MERILL R M. Cephalometric assessment of sagittal relationship between maxilla and mandible[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 1994, 105(4):328-344.

    [4]

    HAJEER M Y, AYOUB A F, MILLETT D T. Three-dimensional assessment of facial soft-tissue asymmetry before and after orthognathic surgery[J]. British Journal of Oral and Maxillofacial Surgery, 2004, 42(5):396-404.

    [5]

    CHEN C, XIE W, FRANKE J, et al. Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements[J]. Medical Image Analysis, 2014, 18(3):487-499.

    [6]

    GAYATHRI V, MENON H P. Challenges in edge extraction of dental X-ray images using image processing algorithms-a review[J]. International Journal of Computer Science & Information Technology, 2014, 5(4):5355-5358.

    [7]

    HUH J, NAM H, KIM J, et al. Studies of automatic dental cavity detection system as an auxiliary tool for diagnosis of dental caries in digital X-ray image[J]. Progress in Medical Physics, 2015, 25(1):52-58.

    [8]

    KAUR A, SINGH C. Automatic cephalometric landmark detection using Zernike moments and template matching[J]. Signal, Image and Video Processing, 2015, 9(1):117-132.

    [9]

    SERES L, VARGA E Jr, KOCSIS A, et al. Correction of a severe facial asymmetry with computerized planning and with the use of a rapid prototyped surgical template:A case report/technique article[J]. Head Face Medicine, 2014, 10(1):27-36.

    [10]

    CODARI M, CAFFINI M, TARTAGLIA G M, et al. Computer-aided cephalometric landmark annotation for CBCT data[J]. International Journal of Computer Assisted Radiology & Surgery, 2017, 12(1):113-121.

    [11]

    QIN Z, DAI X B, XIE L Z. Anatomical landmark localization in lateral cephalograms by using two-layer regression forests[J]. Journal of Applied Sciences, 2019, 37(4):481-489.

    [12]

    EL-FEGHI I, SID-AHMED M A, AHMADI M. Automatic localization of craniofacial landmarks for assisted cephalometry[J]. Pattern Recognition, 2004, 37(3):609-621.

    [13]

    LE-TIEN T, PHAM-CHI H. An approach for efficient detection of cephalometric landmarks[J]. Procedia Computer Science, 2014, 37:293-300.

    [14]

    GRAU V, ALCANIZ M, JUAN M C. Automatic localization of cephalometric landmarks[J]. Journal of Biomedical Informatics, 2001, 34(3):146-156.

    [15]

    JETWANI D P, KUMAR S, SARDANA H. Cephalometric landmark identification using fuzzy wavelet edge detector[C]//IEEE International Workshop on MeMeA 2011, 2011:349-353.

    [16]

    TAM W K, LEE H J. Improving point registration in dental cephalograms by two-stage rectified point translation transform[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8314:63.

    [17]

    RUEDA S, ALCANIZ M. An approach for the automatic cephalometric landmark detection using mathematical morphology and active appearance models[C]//International Conference on Medical Image Computing and Computer-assisted Intervention, 2006:159-166.

    [18]

    IBRAGIMOV B, LIKAR B, PERNUS F, et al. Shape representation for efficient landmark-based segmentation in 3-D[J]. IEEE Transactions on Medical Imaging, 2014, 33(4):861-874.

    [19]

    MIRZAALIAN H, HAMARNEH G. Automatic globally-optimal pictorial structures with random decision forest based likelihoods for cephalometric X-ray landmark detection[C]//International Symposium on Biomedical Imaging 2014:Automatic Cephalometric X-ray Landmark Detection Challenge, 2014:1-12.

    [20]

    LINDNER C, WANG C W, HUANG C T, et al. Fully automatic system for accurate localization and analysis of cephalometric landmarks in lateral cephalograms[J]. Scientific Reports, 2016, 6:33581.

    [21]

    LINDNER C, THIAGARAJAH S, WILKINSON J M, et al. Fully automatic segmentation of the proximal femur using random forest regression voting[J]. IEEE Transactions on Medical Imaging, 2013, 32(8):1462-1472.

    [22]

    SNELL J, RIDGEWAY K, LIAO R, et al. Learning to generate images with perceptual similarity metrics[J]. Computer Science, 2015:4277-4281.

    [23]

    WANG C W, HUANG C T, LEE J H. A benchmark for comparison of dental radiography analysis algorithms[J]. Medical Image Analysis, 2016, 31(6):63-76.

    [24]

    CHU C, CHEN C, NOLTE L P, et al. Fully automatic cephalometric X-ray landmark detection using random forest regression and sparse shape composition[C]//International Symposium on Biomedical Imaging 2014:Automatic Cephalometric X-ray Landmark Detection Challenge, 2014:13-18.

    [25]

    DAI X, ZHAO H, LIU T, et al. Locating anatomical landmarks on 2D lateral cephalograms through adversarial encoder-decoder networks[J]. IEEE Access, 2019, (99):1-1.

  • 期刊类型引用(6)

    1. 王昱,张慧敏,邓雪蓉,刘伟伟,陈璐,赵宁,张晓慧,宋志博,耿研,季兰岚,王玉,张卓莉. 尿枸橼酸定量检测在原发性痛风患者肾结石诊断中的应用价值. 北京大学学报(医学版). 2022(06): 1134-1140 . 百度学术
    2. 赵玲玲. 多层螺旋CT低剂量平扫在诊断肾及输尿管结石中的应用价值分析. 中国CT和MRI杂志. 2019(05): 116-118 . 百度学术
    3. 周镇源,张俊文,刘志锋,蔡金辉,阮耀钦,郭栋华,刘庆余,徐金戈. 常规定量CT鉴别尿路结石成分的研究. CT理论与应用研究. 2019(03): 331-338 . 本站查看
    4. 吕文选,王丽琴,胡云宇,王峰岩,张艾红,巴建. 非增强CT值在预测体外冲击波碎石术治疗肾结石的应用价值研究. 中国CT和MRI杂志. 2018(06): 77-80 . 百度学术
    5. 李丽超,宫凤玲,于鹏,刘俊娥,周立娟,黄孝华. 常规CT鉴别诊断尿酸与非尿酸结石的价值. 广西医学. 2018(03): 284-286 . 百度学术
    6. 陈艾,商亚军,陈英. 泌尿系结石的CT值与结石成分及易碎性之间的关系. 深圳中西医结合杂志. 2018(17): 11-13 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  280
  • HTML全文浏览量:  32
  • PDF下载量:  21
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-01-27
  • 网络出版日期:  2021-09-23

目录

    /

    返回文章
    返回
    x 关闭 永久关闭