ISSN 1004-4140
CN 11-3017/P

基于随机森林的CT前列腺分割

CT Prostate Segmentation Based on Random Forest

  • 摘要: 由于低的 图像对比度、不可预测的前列腺位置和不确定的肠道气体,CT图像中自动和准确的前列腺分割是一个具有挑战性的问题。本文提出了一个基于随机森林的前列腺分割方法。利用自动上下文模型训练一系列的随机森林分类器,然后迭代地把这些训练好的分类器应用在测试图像上以改进前列腺的分类结果。实验结果表明,相比于其他最新方法,我们的方法性能更好。

     

    Abstract: Due to the low contrast of CT image, uncertain position of prostate and variable bowel gas, automatic and accurate CT prostate segmentation is a challenging task. In this paper, a prostate identification method is proposed based on random forest. Using the auto-context model, a sequence of Random Forest classifiers is trained. Then the trained classifiers are applied on the testing image to improve the classification response map iteratively. The experimental results show that, compared with other state-of-the-art methods, our method achieves a better performance.

     

/

返回文章
返回