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Abstract: The segmentation  of  knee  joint  is  of  great  significance  for  diagnosis,  guidance  and treatment  of  knee
osteoarthritis.  However,  manual  delineation  is  time-consuming  and  labor-intensive  since  various  anatomical
structures are involved in the 3D MRI volume. Automatic segmentation of the whole knee joint requires no human
effort,  additionally  can  improve  the  quality  of  arthritis  diagnosis  and  treatment  by  describing  the  details  more
accurately.  Existing knee joint  segmentation methods in the literature focus on only one or few structures out  of
many. In this paper, we study the feasibility of knee joint segmentation on MR images based on neural networks
and deal  with the following challenges:  (1)  end-to-end segmentation of  15 anatomical  structures,  including bone
and soft tissue, of the whole knee on MR images; (2) robust segmentation of small structures such as the anterior
cruciate  ligament,  accounting  for  about  0.036% of  the  volume  data.  Experiments  on  the  knee  joint  MR  images
demonstrate  that  the  average  segmentation  accuracy  of  our  method  achieves  92.92%.  The  Dice  similarity
coefficients of 9 structures were above 94%, five structures were between 87% and 90%, and the remaining one
was about 76%.
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1　Introduction

Knee  osteoarthritis  (OA)  is  one  of  the  most  common  types  of  chronic  arthritis.  The  main
symptoms are joint pain, stiffness, and restricted mobility, which seriously affect the life quality of
patients[1-3].  Among  all  available  clinical  diagnostic  imaging  modalities,  MR imaging  is  the  only
one  that  can  discriminate  soft  tissue,  cartilage  and  fluid,  providing  high-quality  images  for
diagnosing  and  treating  various  diseases[4-5].  In  general,  the  injury  and  inflammation  of  the  keen
joint can be imaged more sensitively and accurately by MR imaging. Many previous works have
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studied  the  relationship  between  cartilage  degeneration  and  joint  pain[6-7],  but  more  and  more
studies have shown that other structure lesions can also lead to knee joint pain[8-10]. With the growth
of knee MR examinations, the radiologists are overwhelmed. Considering that if the key parts of
the knee joints are segmented, the 3D reconstruction results and a more precise region of interest
can  be  provided  to  the  doctors,  which  can  significantly  improve  the  efficiency  and  quality  of
radiology workflow.

In  recent  years,  deep  learning  techniques  have  attracted  attention  in  the  field  of  medical
imaging and have been applied to the segmentation of knee joint MR images. Norman et al. first
proposed  using  a  2D U-Net  to  automatically  segment  and  classify  different  subcompartments  of
the knee at  MR images-cartilage and meniscus.  It  demonstrated that  automatic segmentation can
increase the speed and accuracy of the diagnosis workflow[11]. In Prasoon et al.[12], a novel tri-planar
convolutional  neural  network  was  proposed  for  knee  cartilage  segmentation.  Moreover,  it
performed better  in segmenting tibia cartilage with OA than 3D segmentation methods.  Sibaji  et
al.[13] introduced a conditional  generation adversarial  model  integrating 2D U-Net  to  improve the
segmentation  performance.  With  a  modified  objective  function  combining conventional  loss  and
discriminator  loss,  the  average  segmentation  accuracy  of  cartilage  and  meniscus  achieved  89%.
Zhao et al. proposed a segmentation pipeline combining a 2D encoder-decoder network, 3D fully
connected conditional field and 3D simplex deformable model to improve knee joint segmentation
efficiency and accuracy[14]. Encoder-decoder network has shown promising results for segmenting
cartilage  and  meniscus.  However,  few  studies  focused  on  the  performance  of  3D  segmentation,
and  to  our  best  knowledge,  no  related  works  involved  an  end-to-end  3D  whole  knee  joint
segmentation.

The  proportion  of  different  knee  anatomical  structures  varies  greatly.  There  are  a  total  of
fifteen anatomical structures in the knee joint, including four kinds of bones of femur, tibia, patella
and  fibula,  and  three  kinds  of  cartilage,  as  well  as  other  soft  tissue  such  as  meniscus,  tendons,
anterior  cruciate  ligament  (ACL),  posterior  cruciate  ligament  (PCL),  medial  collateral  ligament
(MCL)  and  lateral  collateral  ligament  (LCL).  As  shown  in Fig.1,  the  background  accounted  for
88.62% of MR images, and the proportion of other structures ranged from 0.024% to 5.44%. As a
result,  accurate  segmentation  of  small  objects  is  of  great  challenge.  In  this  paper,  a  deep  neural
network was constructed to segment the whole knee joint in a completely end-to-end manner on
MR images. Fifteen anatomical structures of the knee joint were segmented within one minute.

The main contributions of this study are the following: (1) We explored the performance of
3D whole knee joint segmentation on MR images using CNN, which is the first and baseline work
in  the  field;  (2)  We  studied  the  effects  of  multiple  loss  designs  on  the  precision  of  knee
segmentation; (3) We proposed a novel inference strategy which balanced accuracy and inference
time. Our method was proved to have an average accuracy of 92.92%, and it is robust to both bone
and soft tissue. 

2　Dataset and Methods 

2.1　Dataset

The 3D knee joint MR images used in the experiments are all Fat-Suppression intermediate-
weighted  fast  spin-echo  images,  the  volume  size  is  400 × 400 × 300,  and  the  voxel  size  is
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0.4 mm × 0.4 mm × 0.4 mm.  A  total  of  154  sets  of  MR image  data  were  collected,  of  which  30
cases had osteoarthritis. The segmentation label is manually annotated by radiologists. In order to
reduce the uncertainty and error of annotations, multiple radiologists delineated the same data and
selected the best annotation by pixel-wised voting.
 

2.2　Network Architecture

An  overview  of  the  adopted  SegResNet  is  illustrated  in Fig.2.  SegResNet  was  based  on  a
typical  encoder-decoder  structure[15],  consisting  of  an  encoding  sub-network  and  a  corresponding
decoding  sub-network.  In  the  first  stage,  the  encoder  uses  3D  convolution  with  kernels  size  of
(3,3,3)  and  stride  (2,2,2)  for  down  sampling.  Down-sampling  layer  is  repeated  four  times  to
achieve  sufficient  data  compression,  and  the  last  feature  map  is  reduced  to  1/16  of  the  input
volume. The initial number of filters is 16, and the number of filters is doubled each time when the

 
5.422 2

3.931 5

0.473 3
0.279 0.422 3

0.092 6 0.065 3 0.067 0.063 0.144 3 0.275
0.036 0.039 0.047 7 0.024 5

fe
m

ur
 c
ar

til
ag

e

tib
ia

 c
ar

til
ag

e

pa
te

lla
 c
ar

til
ag

e

fe
m

ur
tib

ia

pa
te

lla

m
ed

ia
l m

en
is
cu

s

la
te

ra
l m

en
is
cu

s

pa
te

lla
r t

en
do

n

qu
ad

ric
ep

s t
en

do
n

A
C
L

PC
L

M
C
L

LC
L

fib
ul

a

P
er

ce
n

ta
g

e

Tissue
 

Fig.1　Histogram  of  voxels  per  class.  The  background  occupies  about  88.62%,  the  femur,  tibia,
cartilage and fibula occupy a higher percentage of voxels,  while other soft  tissues occupy few
percentages of voxels. The anterior cruciate ligament only accounts for 0.036%. The anatomical
structures of the whole knee vary in volume greatly
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Fig.2　Overview  of  the  SegResNet  network  architecture.  The  encoder  network  down-sample  four
times, and the residual block amounts of each stage are 1, 2, 2, 2, 4
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feature  map  is  down  sampled.  Due  to  the  limitation  of  GPU  memory,  fixed-size  patches  are
cropped with a random center from the whole volume and then inputted to the model.

To  generate  pixel-wise  label,  the  feature  map  shape  is  restored  to  the  input  volume  shape
through 3D convolution with kernel size of (1,1,1) and 3D trilinear up-sampling. It is worth noting
that each stage in the encoder has multiple residual blocks, but only one block in the decoder. In
addition,  a  symmetric  skip  connection  path  between  the  encoder  and  decoder  was  applied  to
promote the model performance by adding features of the encoder and decoder in each stage and
restoring the details in the down-sampling process.

In  addition,  it  should  be  noted  since  the  batch  size  is  limited  by  the  memory  consumption,
group normalization is  adopted rather than batch normalization,  which can significantly improve
the speed of convergence[16]. 

2.3　Loss Function

Small  objects  with  low contrast  and blurred edge made segmentation face  great  challenges.
The  appropriate  selection  of  loss  function  will  bring  accuracy  improvement  of  semantic
segmentation. We selected four commonly used loss function: Cross Entropy and Dice coefficient
function  (CEDice)[17],  Focal  and  Dice  coefficient  function  (FocalDice)[18],  Tversky[19] and
ActiveContour  (AC)[20] to  complete  whole  knee  segmentation.  The  four  loss  functions  were
represented as follows. 

2.3.1　CEDice

CEDice was a  hybrid loss  consisting of  contributions from both CE and Dice.  For  an input
image X, denote the softmax activation of the model as u, and the one-hot coded ground truth as v.
The CEDice loss is formulated as:

LCEDice = LCE+LDice, (1)

in which,
LCE = −

∑
vlgu, (2)

LDice = −
∑

2
uv

u+ v
. (3)

 

2.3.2　FocalDice

FocalDice is also a hybrid loss function, consisting of Focal loss and Dice loss. FocalDice is
formulated as:

LFD = LFocal+LDice. (4)

Focal loss[21] was designed to focus on training hard negative samples. When combining these
two  functions,  the  dice  loss  helps  to  learn  the  information  of  class  distribution  and  alleviate  the
imbalanced voxel problem. Dice loss is defined in formulation (3), focal loss is defined as

LFocal = −
∑
α(1−u)γlgu, (5)

α = 0.25 α = 0.75 γ = 2where    for foreground class weight,    for background class weight, and    is
set to focus on hard samples.

Tversky.  There  is  usually  a  serious  class  imbalance  in  medical  images,  which  leads  to
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training  bias  toward  high  precision  but  low  sensitivity  predictions.  Tversky  loss  is  specially
designed for the field of medical imaging. It can also be seen as a generalization of dice loss. As
the formulation below, Tversky loss adds weights to FP (false positive) and FN (false negative),
which can bring performance improvement in detecting small lesions on highly imbalanced data.

LT = −
∑ |uv|
|uv|+α

∣∣∣u (1− v)
∣∣∣+β∣∣∣ (1−u)v

∣∣∣ . (6)

α β

α = β = 0.5 α+β = 1 β

β

The  parameters    and    respectively  control  the  penalty  for  FP  and  FN.  When  setting
 , Tversky would be the same to Dice loss. Usually let   , larger    pays more

attention  to  false  negatives.  By  increasing   ,  the  model  performance  can  be  significantly
improved. 

2.3.3　Active Contour

Active  contour  loss  was  inspired  by  the  traditional  active  contour  model  and  introduced  to
deep  neural  networks.  Active  contour  loss  integrates  boundary  length  and  region  similarity
together, achieving segmentation by minimizing energy defined below.

LAC = ESurface+γERegion, (7)
in which,

ESurface =
w

V
|∆u′|dc, (8)

ERegion =
w
Ω

[
(c1− v′)2− (c2− v′)2

]
u′dx. (9)

γ γ

u′ v′

u′. dc

Ω c1 c2

c1 c2

Where    weights the region energy, higher    means to focus more on region similarity than
surface  energy.    and    are  the  binary  map  of  prediction  map  and  ground  truth  map,
respectively.  Eq.(8)  is  the  surface  area  of  binary  prediction    V is  the  volume  and    is  the
volume  element.    is  the  input  image.  Suppose f is  the  object  to  be  segmented,   ,    are
the  mean  value  of  the  voxels  out  of f and  inside  of f,  we  set    =    = 1  in  the  experiment.
Trainning  with  AC  loss  function  from  scratch  is  difficult  to  converge  so  that  pre-trained  model
with FocalDice is needed for initialization. 

2.4　Inference Strategy

The inference is limited by GPU memory. A typical solution of that is using a scan window
with  overlapping[22],  as  shown in Fig.3(a).  The whole  volume inference  requires  several  times  of
scan window inferences, and the calculation formula is given below:

Nscan =
∏2

n=0

(
sizei (n)/sizeinterval (n)

)
, (10)

sizei (n) sizeinterval (n)Where n represents image dimension,    and    are the size of the input volume
and scan interval, respectively.

After  scan  window  inferences,  how  to  fuse  the  result  of  scan  windows  especially  the
overlapped  region  is  a  key  problem.  An  intuitive  average  smoothing  method  simply  averages
activations in overlapping regions. However, severe border artifacts result in accuracy degradation.
Gaussian  smoothing  strategy  is  improved  by  [22]  to  better  aggregate  the  results  of  each  scan
window by smoothing activation maps with a Gaussian kernel, which eliminates border artifacts in
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a  time-consuming  fashion.  Considering  inference  accuracy  and  time,  we  propose  a  novel
smoothing kernel as shown in Fig.3(d) and defined in Eq.(11):

K = Rect
( x

s
,

y
s
,

z
s

)
∗Gσ(x,y,z), (11)

Gσ(·) Rect (·)
σ s= x

s
σ

where    is a Gaussian kernel,    is a rectangular function. s controls the size of flat area
shown in Fig.3(d), and    controls the descend sharpness. When setting   , our method kernel
is same with Gaussian smooth kernel. We empirically choose    as 3/4 the size of the scan window
and    as 1/32 the size of the scan window.

The  new  smoothing  kernel  functions  as  a  weight  map  to  fuse  softmax  activations.  Unlike
Gaussian  smoothing,  our  smoothing  kernel  has  a  higher  weight  on  center  regions  and  descends
sharply near the border, which allows larger scan intervals for faster inference.
 

3　Experiments
 

3.1　Details

All  training  and  inference  methods  were  carried  out  on  an  NVIDIA Tesla  V100 GPU.  MR
images  are  normalized  and  the  cropped  in  training  and  inference,  and  the  fixed  crop  size  is
224 × 224 × 192.  To  avoid  overfitting,  we  applied  random zoom,  random scale  and  random flip
during  the  training.  Adam optimizer  was  used,  and  the  learning  rate  was  set  to  2 × 10−4 initially
with polynomial decay.
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Fig.3　(a)  Whole  volume  inference  using  scan  window,  (b)  Filter  kernel  of  average  smoothing
strategy,  (c)  Filter  kernel  of  Gaussian  smoothing  strategy,  (d)  A  new  filter  kernel  and
smoothing strategy designed to eliminate artifacts and speed up inference. All kernels of 2D
cases are shown for convenience
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3.2　Evaluation

10  cases  were  taken  out  as  test  set,  and  the  test  set  includes  5  cases  with  knee  OA  and  5
healthy  cases.  The  remaining  144  cases  are  applied  for  4-fold  cross-validation.  To  evaluate  the
accuracy of knee joint segmentation, the Dice similarity coefficient (DSC) was used and defined as
Eq.(12), whereas TP, FN, FP means true positive, false negative, and false positive respectively.

DSC = 2
TP

TP+FN+FP
. (12)

Hausdorff  distance  (HD)  is  another  overlapping  index  used  for  evaluation,  which  measures
the  distance  between  the  ground  truth-x and  the  predicted  segmentation-y.  Eq.(13)  defines
Hausdorff  distance,  where  sup represents  the  supremum, inf  the  infimum and d is  the  Euclidean
distance.

HD =max
{
supx∈Xinfy∈Yd (x,y) , supy∈Y inf x∈Xd (x,y)

}
. (13)

 

3.3　Results 

3.3.1　Comparison of Loss Function.

In  this  paper,  a  4-fold  cross-validation  experiment  was  performed  on  144  MR images.  The
test was performed on the other 10 MR images. Dataset is randomly sampled to ensure that each
fold  contains  the  same  proportion  of  normal  and  OA  scans.  Models  trained  using  different  loss
functions: CEDice, FocalDice, Tversky and AC, are named M_CED, M_FD, M_TV, and M_AC.
Fig.4 shows the average DSC and HD of each model on test data. M_FD and M_TV significantly
performed better.

In order to further compare the performance of diverse structures, statistics were made on the
bone  and  soft  tissue  respectively,  as  shown  in Fig.5.  Models  performed  best  on  bones,  and  the
accuracy is all above 97%. M_CED and M_AC had lower accuracy especially on cartilage. M_TV
shows poor performance on posterior cruciate ligament and medial collateral ligament.

Although there is a subtle difference in average accuracy of whole knee joint obtained from
model with four different loss functions, when anatomical structures are compared separately, the gap
between models will be noticeable. M_FD achieved better performance both on bone and soft tissue. 

3.3.2　Analysis of Inference Strategies

Differences  between  the  results  of  different  inference  strategies  are  shown  in Table  1.  The
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Fig.4　Performance of models
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first  row is  the  mean time for  whole  volume inference,  the  second row shows mean dice  of  test
dataset, and prediction of one slice shows in the third row. It is obvious that there is wrong tibia
prediction  resulting  from  average  smoothing  inference,  Gaussian  smoothing  and  our  smoothing
method could improve prediction result. Our proposed inference strategy performs best in terms of
time and accuracy.

σ

s s

There are two parameters in our inference smoothing kernel, and the effect of parameters is
discussed below. We set scan window size as M, and compare the dice performance on soft tissue
with  different  parameters. Table  2 shows  the  effect  of  each  parameter.  Smaller  parameter  

makes  a  sharper  kernel,  it  is  similar  with  average  smoothing  kernel  and  resulting  a  worse  dice
performance. The parameter    controls the size of the flat area of the kernel function, a larger  
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Fig.5　Performance on different anatomical structures

Table 1　Comparison of different inference strategies

Average smoothing Gaussian smoothing[22] Our method

Inference time/s 36 126 38

DSC 0.929 0 0.929 2 0.929 2

Prediction of tibia
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means bigger valid overlapping regions and brings better dice performance. 

3.3.3　Performance

The  statistical  results  in  the  previous  section  have  proved  that  M_FD  is  the  most  robust
model, so the following analysis will be all performed on the M_FD. Fig.6 shows the average DSC
and HD on 15 categories. The average DSC of
the whole knee joint is about 92.92%. The DSC
of  four  bones  is  the  highest,  all  above  98%,
followed by the patellar tendon and quadriceps
tendon, with the DSC above 96%. The Dice of
femur  cartilage,  tibia  cartilage  and  medial
meniscus  are  about  94%,  patellar  cartilage,
lateral  meniscus,  ACL,  PCL  and  MCL  is

 
Table 2　Comparison of kernel parameters

s  /M σ  /M DSC

3/4 1/32 0.908 3

3/4 1/64 0.896 1

3/4 1/16 0.896 6

1/2 1/32 0.896 0

7/8 1/32 0.896 7

 
Dice coefficient of each anatomical structure

1.10

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

D
S

C

fe
m

ur
 c
ar

til
ag

e

tib
ia

 c
ar

til
ag

e

pa
te

lla
 c
ar

til
ag

e

fe
m

ur
tib

ia

pa
te

lla

m
ed

ia
l m

en
is
cu

s

la
te

ra
l m

en
is
cu

s

pa
te

lla
 te

nd
on

qu
ad

ric
ep

s t
en

do
n

A
C
L

PC
L

M
C
L

LC
L

fib
ul

a

nnUNet

Our method

(a)

H
D

nnUNet

Our method

fe
m

ur
 c
ar

til
ag

e

tib
ia

 c
ar

til
ag

e

pa
te

lla
 c
ar

til
ag

e

fe
m

ur
tib

ia

pa
te

lla

m
ed

ia
l m

en
is
cu

s

la
te

ra
l m

en
is
cu

s

pa
te

lla
 te

nd
on

qu
ad

ric
ep

s t
en

do
n

A
C
L

PC
L

M
C
L

LC
L

fib
ul

a

(b)

Hausdorff distance of each anatomical structure

0.8

0.7

0.6

0.5

0.4

0.2

0.3

0.1

0

−0.1

−0.2

 

Fig.6　Model performance on test dataset
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between  87% ~  90%,  LCL  is  the  lowest,  about  76.34%.  Also,  the  mean  Hausdorff  distance  is
0.199 4,  and  same  with  DSC,  four  bones  get  lowest  HD,  lateral  meniscus  get  highest  HD  as
0.693 4.  LCL  gets  the  lowest  Dice  Coefficient  than  other  structures  because  lcl  is  the  smallest
structure and only accounts for 0.024 5% of the whole volume. And compared with the state of art
method-nnUNet[22], our model performs better on almost all anatomical structures.

In order  to compare the result  on normal and abnormal scans more intuitively, Fig.7 shows
the  distribution  of  Dice  more  clearly.  The  accuracy  of  patella,  lateral  meniscus,  and  PCL  are
smaller  than  normal  data,  and  the  other  12  structures  achieve  almost  the  same  segmentation
accuracy as normal data, which proves the robustness of the model. For OA, lesion often appears
in  different  locations.  The  varies  proportion  of  different  lesion  results  in  different  dice
performance. Finally, segmentation results are shown in Fig.8. 

4　Conclusion

In  this  study,  we  explored  the  feasibility  of  knee  joint  segmentation  on  fat-suppressed  3D
isotropic  medium-weight  VISTA  images,  and  implemented  a  network  with  an  encoder-decoder
structure  to  achieve  whole  knee  3D  segmentation.  In  order  to  find  a  more  robust  segmentation
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Fig.7　Performance comparison on normal and abnormal data

 

(a) (b) (c) (d) (e) (f)
 

Fig.8　Segmentation results. From left to right are: bone, quadriceps tendon and patellar tendon, collateral
ligaments, cartilage, meniscus & cruciate ligaments, and whole segmented knee joint
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model,  we  carried  out  experiments  to  evaluate  the  performance  of  multiple  loss  functions,  and
proved  that  the  FocalDice  is  more  robust  to  the  segmentation  of  bone  and  soft  tissues.  A  new
smoothing  strategy  is  further  proposed  to  balance  accuracy  and  inference  time.  The  whole  knee
automatic segmentation in our experiment took about 40 seconds per subject, and the average DSC
reached 92.92%. Future work will  focus on improving the accuracy of lesion data segmentation,
with the accumulation of labeled data with OA.
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膝关节三维磁共振影像语义分割的可行性研究
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摘要：MR 三维图像的全膝自动分割对膝骨关节炎疾病的诊断、指导和治疗具有重要意义。然

而，膝关节的三维 MR 图像中涉及多种多样的解剖结构，人工勾画费时耗力；全膝自动分割不

但节省人力，且可以通过更准确的细节勾画来提高关节炎的诊疗质量。现有的膝关节分割方

法只关注众多解剖结构中的一个或几个结构，无法提供全膝分割的结果。本文研究基于三维

神经网络的全膝分割方法，并致力于应对以下挑战： ① 在三维 MR 图像上对包括骨骼和软组

织在内的全膝 15 个解剖结构进行端到端分割； ② 前交叉韧带等小结构的鲁棒分割，前交叉

韧带仅占全膝体积的 0.036％ 左右。在基于脂肪抑制三维各向同性中等权重 VISTA 序列的膝

关节 MR 图像上，验证本文方法的平均分割精度为 92.92％，其中 9种结构的 Dice 相似系数

在 94％ 以上，5种结构在 87％～90％ 之间，剩余 1种结构在 76％ 左右。

关键词：深度学习；语义分割；神经网络；磁共振影像；膝骨关节炎
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