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Abstract: The segmentation of knee joint is of great significance for diagnosis, guidance and treatment of knee
osteoarthritis. However, manual delineation is time-consuming and labor-intensive since various anatomical
structures are involved in the 3D MRI volume. Automatic segmentation of the whole knee joint requires no human
effort, additionally can improve the quality of arthritis diagnosis and treatment by describing the details more
accurately. Existing knee joint segmentation methods in the literature focus on only one or few structures out of
many. In this paper, we study the feasibility of knee joint segmentation on MR images based on neural networks
and deal with the following challenges: (1) end-to-end segmentation of 15 anatomical structures, including bone
and soft tissue, of the whole knee on MR images; (2) robust segmentation of small structures such as the anterior
cruciate ligament, accounting for about 0.036% of the volume data. Experiments on the knee joint MR images
demonstrate that the average segmentation accuracy of our method achieves 92.92%. The Dice similarity
coefficients of 9 structures were above 94%, five structures were between 87% and 90%, and the remaining one
was about 76%.
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1 Introduction

Knee osteoarthritis (OA) is one of the most common types of chronic arthritis. The main
symptoms are joint pain, stiffhess, and restricted mobility, which seriously affect the life quality of
patients" . Among all available clinical diagnostic imaging modalities, MR imaging is the only
one that can discriminate soft tissue, cartilage and fluid, providing high-quality images for
diagnosing and treating various diseases'*”. In general, the injury and inflammation of the keen
joint can be imaged more sensitively and accurately by MR imaging. Many previous works have
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studied the relationship between cartilage degeneration and joint pain®”, but more and more
studies have shown that other structure lesions can also lead to knee joint pain™'”. With the growth
of knee MR examinations, the radiologists are overwhelmed. Considering that if the key parts of
the knee joints are segmented, the 3D reconstruction results and a more precise region of interest
can be provided to the doctors, which can significantly improve the efficiency and quality of
radiology workflow.

In recent years, deep learning techniques have attracted attention in the field of medical
imaging and have been applied to the segmentation of knee joint MR images. Norman et al. first
proposed using a 2D U-Net to automatically segment and classify different subcompartments of
the knee at MR images-cartilage and meniscus. It demonstrated that automatic segmentation can
increase the speed and accuracy of the diagnosis workflow"". In Prasoon et al."”, a novel tri-planar
convolutional neural network was proposed for knee cartilage segmentation. Moreover, it
performed better in segmenting tibia cartilage with OA than 3D segmentation methods. Sibaji et
al."” introduced a conditional generation adversarial model integrating 2D U-Net to improve the
segmentation performance. With a modified objective function combining conventional loss and
discriminator loss, the average segmentation accuracy of cartilage and meniscus achieved 89%.
Zhao et al. proposed a segmentation pipeline combining a 2D encoder-decoder network, 3D fully
connected conditional field and 3D simplex deformable model to improve knee joint segmentation
efficiency and accuracy"”. Encoder-decoder network has shown promising results for segmenting
cartilage and meniscus. However, few studies focused on the performance of 3D segmentation,
and to our best knowledge, no related works involved an end-to-end 3D whole knee joint
segmentation.

The proportion of different knee anatomical structures varies greatly. There are a total of
fifteen anatomical structures in the knee joint, including four kinds of bones of femur, tibia, patella
and fibula, and three kinds of cartilage, as well as other soft tissue such as meniscus, tendons,
anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament
(MCL) and lateral collateral ligament (LCL). As shown in Fig.1, the background accounted for
88.62% of MR images, and the proportion of other structures ranged from 0.024% to 5.44%. As a
result, accurate segmentation of small objects is of great challenge. In this paper, a deep neural
network was constructed to segment the whole knee joint in a completely end-to-end manner on
MR images. Fifteen anatomical structures of the knee joint were segmented within one minute.

The main contributions of this study are the following: (1) We explored the performance of
3D whole knee joint segmentation on MR images using CNN, which is the first and baseline work
in the field; (2) We studied the effects of multiple loss designs on the precision of knee
segmentation; (3) We proposed a novel inference strategy which balanced accuracy and inference
time. Our method was proved to have an average accuracy of 92.92%, and it is robust to both bone
and soft tissue.

2 Dataset and Methods
2.1 Dataset

The 3D knee joint MR images used in the experiments are all Fat-Suppression intermediate-
weighted fast spin-echo images, the volume size is 400 x 400 x 300, and the voxel size is
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Fig.1 Histogram of voxels per class. The background occupies about 88.62%, the femur, tibia,
cartilage and fibula occupy a higher percentage of voxels, while other soft tissues occupy few
percentages of voxels. The anterior cruciate ligament only accounts for 0.036%. The anatomical
structures of the whole knee vary in volume greatly

0.4 mm x 0.4 mm x 0.4 mm. A total of 154 sets of MR image data were collected, of which 30
cases had osteoarthritis. The segmentation label is manually annotated by radiologists. In order to
reduce the uncertainty and error of annotations, multiple radiologists delineated the same data and

selected the best annotation by pixel-wised voting.
2.2 Network Architecture

An overview of the adopted SegResNet is illustrated in Fig.2. SegResNet was based on a

typical encoder-decoder structure'”

, consisting of an encoding sub-network and a corresponding
decoding sub-network. In the first stage, the encoder uses 3D convolution with kernels size of
(3,3,3) and stride (2,2,2) for down sampling. Down-sampling layer is repeated four times to
achieve sufficient data compression, and the last feature map is reduced to 1/16 of the input

volume. The initial number of filters is 16, and the number of filters is doubled each time when the
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Fig.2 Overview of the SegResNet network architecture. The encoder network down-sample four
times, and the residual block amounts of each stage are 1, 2, 2, 2, 4
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feature map is down sampled. Due to the limitation of GPU memory, fixed-size patches are
cropped with a random center from the whole volume and then inputted to the model.

To generate pixel-wise label, the feature map shape is restored to the input volume shape
through 3D convolution with kernel size of (1,1,1) and 3D trilinear up-sampling. It is worth noting
that each stage in the encoder has multiple residual blocks, but only one block in the decoder. In
addition, a symmetric skip connection path between the encoder and decoder was applied to
promote the model performance by adding features of the encoder and decoder in each stage and
restoring the details in the down-sampling process.

In addition, it should be noted since the batch size is limited by the memory consumption,
group normalization is adopted rather than batch normalization, which can significantly improve
the speed of convergence'”

2.3 Loss Function

Small objects with low contrast and blurred edge made segmentation face great challenges.
The appropriate selection of loss function will bring accuracy improvement of semantic
segmentation. We selected four commonly used loss function: Cross Entropy and Dice coefficient

9
' and

function (CEDice)"”, Focal and Dice coefficient function (FocalDice)"", Tversky'
ActiveContour (AC)™ to complete whole knee segmentation. The four loss functions were

represented as follows.
2.3.1 CEDice

CEDice was a hybrid loss consisting of contributions from both CE and Dice. For an input
image X, denote the softmax activation of the model as u, and the one-hot coded ground truth as v.
The CEDice loss is formulated as:

Lcgpice = Leg + Lpice, (1

in which,

Lee == vgu, @)

uyv
l/Dice:_Z2 U+v .
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2.3.2 FocalDice

FocalDice is also a hybrid loss function, consisting of Focal loss and Dice loss. FocalDice is
formulated as:

Lep = Lgocar + Lpice- (4)
Focal loss"”" was designed to focus on training hard negative samples. When combining these

two functions, the dice loss helps to learn the information of class distribution and alleviate the
imbalanced voxel problem. Dice loss is defined in formulation (3), focal loss is defined as

Ly == ) (1 —0)'lgu, 5)

where a =0.25 for foreground class weight, @ =0.75 for background class weight, and y=2 is
set to focus on hard samples.
Tversky. There is usually a serious class imbalance in medical images, which leads to
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training bias toward high precision but low sensitivity predictions. Tversky loss is specially
designed for the field of medical imaging. It can also be seen as a generalization of dice loss. As
the formulation below, Tversky loss adds weights to FP (false positive) and FN (false negative),
which can bring performance improvement in detecting small lesions on highly imbalanced data.

|uv]
==y _ 6
b vl +alu(1=v)|+B|(1 - u)| ©

The parameters @ and S respectively control the penalty for FP and FN. When setting
a =£=0.5, Tversky would be the same to Dice loss. Usually let a+g8 =1, larger S pays more
attention to false negatives. By increasing B, the model performance can be significantly
improved.

2.3.3 Active Contour

Active contour loss was inspired by the traditional active contour model and introduced to
deep neural networks. Active contour loss integrates boundary length and region similarity
together, achieving segmentation by minimizing energy defined below.

LAC = ESurface + yERegiona (7)

in which,
ESurface = J\V |AL{ |dc7 (8)
ERegion = fﬂ [(Cl - V/)z - (C2 - V,)z] u'dx. (9)

Where y weights the region energy, higher y means to focus more on region similarity than
surface energy. u’ and Vv are the binary map of prediction map and ground truth map,
respectively. Eq.(8) is the surface area of binary prediction u’. V is the volume and d, is the
volume element.  1is the input image. Suppose f is the object to be segmented, c¢,, ¢, are
the mean value of the voxels out of f and inside of f, we set ¢, = ¢, =1 in the experiment.
Trainning with AC loss function from scratch is difficult to converge so that pre-trained model
with FocalDice is needed for initialization.

2.4 Inference Strategy

The inference is limited by GPU memory. A typical solution of that is using a scan window
with overlapping””, as shown in Fig.3(a). The whole volume inference requires several times of
scan window inferences, and the calculation formula is given below:

New = [ |, (5128, (1) [sizeena (). (10)

Where n represents image dimension, size;(n) and sizei,... (7) are the size of the input volume
and scan interval, respectively.

After scan window inferences, how to fuse the result of scan windows especially the
overlapped region is a key problem. An intuitive average smoothing method simply averages
activations in overlapping regions. However, severe border artifacts result in accuracy degradation.
Gaussian smoothing strategy is improved by [22] to better aggregate the results of each scan
window by smoothing activation maps with a Gaussian kernel, which eliminates border artifacts in
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a time-consuming fashion. Considering inference accuracy and time, we propose a novel
smoothing kernel as shown in Fig.3(d) and defined in Eq.(11):

Xy z

K= Rect( =, —)*Gv(x,y,z), (1)
S N S

where G,(-) is a Gaussian kernel, Rect(:) is a rectangular function. s controls the size of flat area
shown in Fig.3(d), and o controls the descend sharpness. When setting s=x, our method kernel
is same with Gaussian smooth kernel. We empirically choose s as 3/4 the size of the scan window
and o as 1/32 the size of the scan window.

Scan interval

overlap
1 |

J—— L 4
T
Scan window

() (b)

(d)

Fig.3 (a) Whole volume inference using scan window, (b) Filter kernel of average smoothing
strategy, (c) Filter kernel of Gaussian smoothing strategy, (d) A new filter kernel and
smoothing strategy designed to eliminate artifacts and speed up inference. All kernels of 2D
cases are shown for convenience

The new smoothing kernel functions as a weight map to fuse softmax activations. Unlike

Gaussian smoothing, our smoothing kernel has a higher weight on center regions and descends
sharply near the border, which allows larger scan intervals for faster inference.

3 Experiments
3.1 Details

All training and inference methods were carried out on an NVIDIA Tesla V100 GPU. MR
images are normalized and the cropped in training and inference, and the fixed crop size is
224 x 224 x 192. To avoid overfitting, we applied random zoom, random scale and random flip
during the training. Adam optimizer was used, and the learning rate was set to 2 x 10" initially

with polynomial decay.
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3.2 Evaluation

10 cases were taken out as test set, and the test set includes 5 cases with knee OA and 5
healthy cases. The remaining 144 cases are applied for 4-fold cross-validation. To evaluate the
accuracy of knee joint segmentation, the Dice similarity coefficient (DSC) was used and defined as
Eq.(12), whereas TP, FN, FP means true positive, false negative, and false positive respectively.

TP
DSC=2———. 12
5C TP +FN + FP (12)

Hausdorff distance (HD) is another overlapping index used for evaluation, which measures
the distance between the ground truth-x and the predicted segmentation-y. Eq.(13) defines
Hausdorff distance, where sup represents the supremum, inf the infimum and d is the Euclidean
distance.

HD = max{supxexinfyeyd (x,y), sup,,inf cxd (x, y)}. (13)

3.3 Results
3.3.1 Comparison of Loss Function.

In this paper, a 4-fold cross-validation experiment was performed on 144 MR images. The
test was performed on the other 10 MR images. Dataset is randomly sampled to ensure that each
fold contains the same proportion of normal and OA scans. Models trained using different loss
functions: CEDice, FocalDice, Tversky and AC, are named M_CED, M_FD, M_TV, and M_AC.
Fig.4 shows the average DSC and HD of each model on test data. M_FD and M_TV significantly
performed better.

Dice of each model Hausdorff distance of each model
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Fig.4 Performance of models

In order to further compare the performance of diverse structures, statistics were made on the
bone and soft tissue respectively, as shown in Fig.5. Models performed best on bones, and the
accuracy is all above 97%. M_CED and M_AC had lower accuracy especially on cartilage. M TV
shows poor performance on posterior cruciate ligament and medial collateral ligament.

Although there is a subtle difference in average accuracy of whole knee joint obtained from
model with four different loss functions, when anatomical structures are compared separately, the gap
between models will be noticeable. M_FD achieved better performance both on bone and soft tissue.

3.3.2 Analysis of Inference Strategies

Differences between the results of different inference strategies are shown in Table 1. The
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first row is the mean time for whole volume inference, the second row shows mean dice of test
dataset, and prediction of one slice shows in the third row. It is obvious that there is wrong tibia
prediction resulting from average smoothing inference, Gaussian smoothing and our smoothing
method could improve prediction result. Our proposed inference strategy performs best in terms of
time and accuracy.

BONES
~~ M _CED - M_FD — M_TV —~ M_AC
1.00
0.99
o) v
8 0.98
0.97
0.96
FEMUR TIBIA PATELLA FIBULA
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()
CARTILAGE & MENISCUS TENDON & LIGAMENT
—~— M _CED = M FD — M_TV M_AC —~— M _CED = M FD — M TV M_AC
0.97 1.00
0.95 0.95
0.93 / 0.90
% 0.91 % 0.85
0.89 \ 0.80
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0.85 Q- 0.70
& CW»&‘& $5%s K
N ‘ZY' \% % ¥
$ SOESEP ¥
O QY’ o @ » {(}})
TISSUE & TISSUE
(b) (©
Fig.5 Performance on different anatomical structures
Table 1 Comparison of different inference strategies
Average smoothing Gaussian smoothing"™”’ Our method
Inference time/s 36 126 38
DSC 0.9290 0.9292 0.9292

Prediction of tibia

There are two parameters in our inference smoothing kernel, and the effect of parameters is
discussed below. We set scan window size as M, and compare the dice performance on soft tissue
with different parameters. Table 2 shows the effect of each parameter. Smaller parameter o
makes a sharper kernel, it is similar with average smoothing kernel and resulting a worse dice
performance. The parameter s controls the size of the flat area of the kernel function, a larger s
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means bigger valid overlapping regions and brings better dice performance.
3.3.3 Performance

The statistical results in the previous section have proved that M_FD is the most robust
model, so the following analysis will be all performed on the M_FD. Fig.6 shows the average DSC
and HD on 15 categories. The average DSC of

the whole knee joint is about 92.92%. The DSC Table 2 Comparison of kernel parameters
of four bones is the highest, all above 98%, s IM o IM DSC

followed by the patellar tendon and quadriceps 34 32 09083
tendon, with the DSC above 96%. The Dice of 3/4 164 0.8961
femur cartilage, tibia cartilage and medial 3/4 1/16 0.8966
meniscus are about 94%, patellar cartilage, 172 1732 0.8960
lateral meniscus, ACL, PCL and MCL is /8 1732 0.8967

Dice coefficient of each anatomical structure
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Fig.6 Model performance on test dataset
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between 87% ~ 90%, LCL is the lowest, about 76.34%. Also, the mean Hausdorff distance is
0.1994, and same with DSC, four bones get lowest HD, lateral meniscus get highest HD as
0.6934. LCL gets the lowest Dice Coefficient than other structures because Icl is the smallest
structure and only accounts for 0.024 5% of the whole volume. And compared with the state of art
method-nnUNet™, our model performs better on almost all anatomical structures.

In order to compare the result on normal and abnormal scans more intuitively, Fig.7 shows
the distribution of Dice more clearly. The accuracy of patella, lateral meniscus, and PCL are
smaller than normal data, and the other 12 structures achieve almost the same segmentation
accuracy as normal data, which proves the robustness of the model. For OA, lesion often appears
in different locations. The varies proportion of different lesion results in different dice
performance. Finally, segmentation results are shown in Fig.8§.

el healthy e={ll==abnormal

1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60

DSC

(b) (c)

Fig.8 Segmentation results. From left to right are: bone, quadriceps tendon and patellar tendon, collateral
ligaments, cartilage, meniscus & cruciate ligaments, and whole segmented knee joint

4 Conclusion

In this study, we explored the feasibility of knee joint segmentation on fat-suppressed 3D
isotropic medium-weight VISTA images, and implemented a network with an encoder-decoder

structure to achieve whole knee 3D segmentation. In order to find a more robust segmentation
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model, we carried out experiments to evaluate the performance of multiple loss functions, and
proved that the FocalDice is more robust to the segmentation of bone and soft tissues. A new
smoothing strategy is further proposed to balance accuracy and inference time. The whole knee
automatic segmentation in our experiment took about 40 seconds per subject, and the average DSC
reached 92.92%. Future work will focus on improving the accuracy of lesion data segmentation,
with the accumulation of labeled data with OA.
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