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Abstract: CT reconstruction from insufficient data is important in many medical and other 
applications. Recently to solve this under-determined problem, the Total Variation minimization 
method has regained popularity due to the newly-emerging compressed sensing theory. In this paper 
TV-minimization is extended to a more general framework for CT reconstuction from insufficient data. 
The framework proposed is also based on the compressed sensing theory, but is more flexible and 
amenable to various applications. Analysis and simulations are conducted for an initial special case 
and promising results are achieved. 
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1 Introduction and motivation 

Among the various forms of Computed Tomography (CT), one of the important problems on 
image formation concerns on reconstruction from insufficient projection data. Situation of 
insufficient data arises frequently out of the constraints from the imaging hardware and scanning 
geometry (as in tomosynthesis and retrospectively gated cardiac micro-CT[1]), or the purpose to 
reduce the radiation exposure imposed on the sample scanned[2].  

Generally there exist two main categories of insufficient data problems. One class can be 
referred to as few-view sampling, where the projection data are obtained at sparse angles that are 
uniformly distributed. The other class is named limited-range sampling, where the projection data 
are gathered in some limited-angular range. In both situations, since the Nyquist sampling law is 
not satisfied, the application of standard filtered back-projection (FBP) algorithm will result in 
perceptible streaks or artifacts in the result reconstructed. 

Mathematically the formulation of projection data can be modeled as line integrals of the 
tomographic image. Since in practice we are concerned with discrete tomography, i.e., what we 
want to reconstruct is an image f composed of N by N pixels, the reconstruction problem reduces 
to how to invert the following linear transform (or solve the following linear equation)  

 g M f  (1) 

where the system matrix M represents the contributions of each pixel in f to the projection data 
and is usually derived via the ray-driven model. Since the linear equation (1) is highly 
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under-determined, there are infinite solutions satisfying the equation. Thus the reconstruction 
procedure actually boils down to how to search for the tomographic image we want from all the 
feasible solutions. 

1.1 TV-minimization 

To complete such a search in the solution space, other prior information or model assumption 
should be imposed. And usually some iterative optimization algorithm has to be adopted. One 
popular assumption which has been widely used is that in medical applications, tomographic 
images are close to piecewise constant, so the total variation (TV) of the solution should be quite 
small. Here the TV of a discrete 2D image ,x yf  is defined as 

      
1

2 2

, 1, , , 1
,

TV x y x y x y x y
x y

   f f f f f
2

  (2) 

By minimizing the TV of the solution, one can pick up an almost piecewise constant image 
from all the feasible solutions[3-4]. Traditionally such solving methods were implemented via TV 
regularized iterative optimization algorithm. And so there is a trade-off between the data fidelity 
and the TV regularity, i.e., to obtain an image with smaller TV, one usually has to violate the data 
fidelity constraints more. Also there is no profound theory analysis concerning the existence and 
uniqueness of the feasible solution. 

Recently, the emergence of the compressed sensing theory brings new insight into the reason 
why the TV-minimization method could succeed. Candes et al.[5] proved that with overwhelming 
probability a discrete signal can be exactly reconstructed from highly incomplete 
frequency information provided that the support of f is sparse enough. For a 2D image ,

NCf

x y  we 
can actually derive a complex gradient signal ,

f

x y whose real and imaginary components are the 
two directional derivatives along the x and y directions respectively, i.e.  

f

    , , 1, , ,x y x y x y x y x yj     f f f f f 1  (3) 

Then it is easy to see that  TV f is the l1 norm of signal ,x y . Also note that the frequency 
information of ,

f

x y  can be inferred from that of signal ,f x y . So if the gradient signal of an 
image is sparse enough, or equivalently if the image ,

f

x y  is piecewise constant enough, it can 
also be accurately reconstructed from highly incomplete frequency information. In the simulations 
in Candes et al[5], the Shepp-Logan phantom can be accurately reconstructed from the 
parallel-beam projections gathered under as few as 22 angles.  

f

 
Partly inspired by [5], TV minimization has regained popularity in tomographic 

reconstruction. Pan et al[6-7] extends similar methods to the fan-beam 2D CT and 3D cone-beam 
CT reconstruction, where the formulation is to minimize TV of the object image while 
conforming to the projection fidelity and image positivity as, 

  
2

min TV . .s t
  




Mf g
f

f 0
 (4) 

Note that the second constraint should be understood to hold component-wise. To solve the 
optimization problem, the authors proposed an solving procedure which alternated between the 
Algebraic Reconstruction Technique (ART) iteration and the gradient descent iteration of the TV 
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function. In Song[1], an equivalent TV-regularized linear least squares formulation is adopted for 
the retrospectively gated cardiac micro-CT, where the insufficient projection data also has 
irregular angle distribution. The non-linear conjugate gradient (CG) method is used to solve the 
optimization problem. In Duan et al[8], an iterative reconstruction-reprojection algorithm is 
integrated with minimizing TV to solve a similar optimization problem. Despite the different 
solving approaches, the kernel formulations in [1] and [6]～[8] are actually the same. The 
underlying principle actually boils down to minimizing the l1 norm of the gradient signal so as to 
restore an image with sparse gradient, which matches the philosophy of compressed sensing. 

However, the gradient of the real-world CT images is hardly sparse. Though tomographic 
images are relatively constant within some volumes like in an organ, abundant details in the image 
usually lead to dense gradient support. That partly explains why when applying TV-minimization 
method to practical CT images, usually more projections that what is suggested in simulation are 
necessary [1-2, 9]. Moreover, to the best knowledge of the authors, apart from the original theorems 
in [5] no other explicit theoretical analysis or simulations have been done to investigate how 
sparse the gradient of the image should be so that it could be restored by how much projection 
data. 

1.2 Compressed sensing and RIP 

Starting from [5], the compressed sensing theory has been extended from recovery from 
incomplete frequency information to other more general linear transforms. In [10] and [11], a 
series of powerful results have been developed about the exact recovery conditions of a sparse 
signal  from a limited number of observations. We will introduce some of the main 
results in this section.  

mRx

Consider recovering an unknown sparse signal 0 whose support mRx   0 0| 0T t t x  
is assumed to have small cardinality. And all we know about x0 are n linear measurements which 
are denoted by 0  where A is the linear sensing matrix. Here the linear equation system is 
under-determined since we have fewer observations than the unknowns, i.e. n

y Ax
 m.  

It turns out that if the signal x0 
is sparse enough, it can be recovered by solving the convex 

program below 

 
1

min . .s t x Ax y  (5) 

provided that the matrix  A  obeys the “restricted isometry property” (RIP) . 
To introduce the notion of RIP, let AT,  1,2, ,T   m denote the sub-matrix formed by 

extracting  columns from A corresponding to the indices contained in T. Then the 
S-restricted isometry constant 

| |T

S  of A is defined [10] to be the smallest quantity so that 

    2 2
1 S T S   c A c c

2
1   (6) 

holds for all subsets T satisfying T S . Intuitively, this S-restricted isometry constant reflects 
how well a subset of the columns with cardinality less than S behaves like an orthonormal system, 
i.e., all the columns should be nearly unit-length and as incoherent as possible. 

It was proved[10] that if the RIP of the sensing matrix A is good enough so that 

 2 3 1S S S      (7) 



 CT 理论与应用研究 19 卷 4 

then solving (5) retrieves exactly any sparse signal whose support size satisfies0x T S . 
In practice what we can usually obtain is limited to somewhat noisy measurements 

as 0 , where e is the unknown noise assumed to be bounded by  y Ax e
2

e . To retrieve 
the original signal, we can alternatively solve the following program, 

 
1

min . .s t
2

 x Ax y  (8) 

Theorem 1.1  Assume that for matrix A there exists S such that 3 4 2S S   . Then for any 
signal x0 supported on T0 such that 0T S and any perturbation e satisfying 

2
e , the 

solution x#
 to (8) obeys 

 #
0 2 SC   x x  (9) 

where the constant CS depends only on 4S  and is well behaved for 4S  with reasonable value. 
Theorem 1.1, which is proved in [11], ensures the stableness of the solution of (5) in the 

sense that small disturbance in the observation only results in small changes in the signal 
recovered. So the l1 minimization method can be used robustly for the imperfect measurements. 

1.3 This paper 

Since the success of TV in CT reconstruction from insufficient data is just one special case 
indicated by the compressed sensing theory, we want to investigate a more general form of this 
problem. Unlike some special case in some specific application [12], the CT images in reality are 
hardly sparse; however, it is possible to find some (over-complete) basis W on which the 
expansion coefficients of the image x is sparse, i.e. x Wα with sparse . So α (5) turns into 

 
1

min . .s t α AWα y  (10) 

And accordingly problem (8) turns into 

 
1

min . .s t
2

 α AWα y  (11) 

There exist many possible bases on which the expansion coefficients of x can be sparse. The 
selection of appropriate basis depends highly on specific practical application. For example, the 
basis can be derived from orthogonal wavelet transform or some over-complete dictionary. 
Research in compressed sensing theory also suggests the combination of two orthogonal bases 
like discrete cosine transform (DCT) and wavelets. How to construct or learn a feasible dictionary 
to approximate the signals of interest sparsely and effectively is still an open problem, and is 
beyond the scope of this paper.  

For simplicity, in this paper we will take W to be the 3-level Haar wavelet basis. We will 
investigate the sparse extent of the wavelet coefficients of the images that can be recovered 
accurately by solving (11). Such investigation, even just numerically, can give us a quantitative 
comprehension about the reconstruction ability we can hope for and the applicability of the 
compressed sensing theory in the CT reconstruction. Similar ideas and preliminary study were 
also represented in [13]. However, our paper is deeper and more comprehensive in various aspects. 
For example, we test the recovery performance of (11) in both few-view and limited-range cases. 
Also the solving method we adopt is more amenable to large-scale practical CT reconstruction. 
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The rest of this paper is structured as follows. In Section 2, we will detail on the analysis of 
the RIP of the combined sensing matrix. Also we will describe the solving method adopted. 
Section 3 presents the simulation results and relative analysis. Conclusions and future work are 
discussed in Section 4. 

2 RIP analysis and reconstruction methods 

In this paper, we focus on the 2D fan-beam CT reconstruction (though the method proposed 
can be extended to 3D case). The system matrix M in (1) is constructed via the well-known 
ray-driven projection model. 

Since some extent of noise is inevitable in practice, formulation (11) is adopted. Replacing 
the matrix A in (11) by the system matrix M, we rewrite (11)  as below. 

 
1

min . .s t
2

 α MWα y  (12) 

It is easily to see that sensing matrix is now the composition of wavelet synthesizing and 
projecting. Since the RIP of the sensing matrix plays a crucial role in sparse, we first give out 
some preliminary analysis of the RIP of the combined sensing matrix MW. In the second part of 
this section, we will detail on the algorithm used to solve (12). 

2.1 RIP of the combined sensing matrix 

Replacing A in (6) by the combined sensing matrix MW, we immediately have 

    2 2
1 S T S   c MW c c

2
1   (13) 

Note that W is orthonormal; so 
2 2

for any index set Tc W c  1,2, ,T   m  and any 
vector TRc . This immediately leads to the following theorem. 
Theorem 2.1  Assume that the columns of W are orthonormal. Then the operator l2 norm (i.e., 
the maximum singular value) of the system matrix M provides an upper bound of the 
S-restricted isometry constants of MW. Exactly, denoting the maximum singular value of M 
by M , we have 

  2min 1 , 1S  M  (14) 

Proof  The proof is straightforward from the definition of S-restricted isometry constants in (6) 
and the basic conclusions of the linear algebraic. What need to note is that since we usually have 
T n m  , cannot transverse the whole TW c mR space. 

Theorem 2.1 actually indicates that to make S  
small for larger S, the operator l2 norm of 

the system matrix M should be as close to 1 as possible. However, simple numerical experiment 
manifests that the practical system matrix created via the ray-driven model seriously violates this 
condition (actually the maximum singular value of M can be as large as several thousand in our 
problem scale); however, solving (12) still recovers the sparse coefficients 0 accurately in our 
simulations. Motivations to seek reasonable explanations for this lead us to the following two 
lemmas. 

α

Lemma 2.2  For given sensing matrix A, assume D to be a given non-singular matrix with 
appropriate size. If x0 is the solution to (5), then it is also the solution to the following problem, 
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1

min . .s t x DAx Dy  (15) 

Proof  The proof is direct since the feasible region of the convex optimization problem (15) is 
the same with the feasible region of (5). 
Lemma 2.3  Given sensing matrix A, sparse signal x0, and 0 y Ax e  with

2
e , the 

solution to problem (8) and the solution to the following problem  

 
1 2

min . .s t
2
 x DAx Dy D  (16) 

are within almost the same distance from x0.  
Lemma 2.3 is brought up here without profound proof; however, it leads to reasonable 

explanations to why we can recover sparse signals by solving (12) directly. Such explanation, 
starting from the following theorem, is verified and supported by numerical simulations. 
Theorem 2.4  If the rows of the system matrix M are nonzero and orthogonal, then by solving 
(12) we can retrieve the sparse signals with errors of reasonable bound, though the RIP of the 
original combined sensing matrix MW is not good enough. 
Proof  Denote the i-th row of the system matrix M by . Let D be a diagonal matrix with the 
i-th diagonal element to be 

iM
1

2i


M , then we have T( ) DM DM I  where I denotes the unity 

matrix. By Theorem 2.1, the combined sensing matrix DMW obviously has good RIP. So solving 
the following optimization problem 

 
1

min . .s t
2 2

 α DMWα D y D  (17) 

retrieves the original sparse coefficients 0 with reasonably small error. Then by Lemma 2.3, 
solving 

α
(12) will also retrieve with similar reasonable error.  0

Actually theorem 2.4 points out that, if the system matrix M is good structured in the sense 
that by imposing some non-singular square matrix D its singular values will approach 1, then we 
can still use the combined matrix MW to retrieve sparse coefficient effectively. 

α

In the practical ray-driven model, every row of the system matrix M denotes a group of 
weights whose inner product with the image vector leads to the integral value along the 
corresponding ray. Since intersection of those rays is inevitable, it is easy to see that these rows of 
weights could not be strictly orthogonal. So after scaling all the diagonal entries to 1, the weighted 
symmetrical matrix T( )DM DM will also have many nonzero non-diagonal entries. In this case, 
based on the well-known Gershgorin Disc Theorem, all the eigenvalues of T( )DM DM will fall 
into an interval on the number axis whose center is 1, with the radius of the interval bounded by 
the maximum of the sums of the magnitude of the non-diagonal entries in one row. To make the 
eigenvalues as close to 1 as possible, the magnitude of the non-diagonal entries should be 
suppressed as small as possible. 

Based on this, an obvious good way is to make the rows of M as uncorrelated as possible. 
For fixed number of projection angles available, this can be achieved by spreading the projecting 
rays more separately. We can also process M ahead by excluding those rows that are too 
correlated with some other row. Both approaches will be verified in simulations described in 
Section 3. 

2.2 Solving via the fast iterative shrinkage-thresholding algorithm 

To solve the program (12), we convert it to the following unconstrained l1 norm regularized 
linear least squares problem as 
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2#

1

1
arg min

2
  

α
α α y MWα

2
 (18) 

Classical optimization theory points out that, the formulations in (18) and (12) are equivalent 
under some appropriate values of parameters, though it is hard to derive explicit relationship 
between   and   for general problems. However, from the optimality condition of (18), we 
can still analyze the reasonable value of   to make these two problems achieve similar 
solutions. 

Since the object function is convex, it is easy to see that the optimal solution  satisfies #α

    T# #

1
     α MW MWα y 0  (19) 

where #

1
 denotes the subgradient of the l1 norm function at the point . Since we hope that 

 and the absolute value of 
 α #α

#
0α α #

1
 is no more than 1, it easy to see that the parameter  α   

should be at the same scale with the entries in  T
MW e  when (19) holds. So in practice based 

on the estimation of the magnitude of the error e, we can set the value of   to be 

  T


 MW e  (20) 

To solve the unconstrained optimization itself, we adopt the fast iterative 
shrinkage-thresholding algorithm (FISTA)[14]. This algorithm has the merit of easy 
implementation since it is the extension of the optimal gradient descent method. Also this 
algorithm is appropriate for solving large-scale problems without special requirement of the 
matrix MW.  

FISTA algorithm requires the Lipschitz constant of the gradient of the smooth part in the 

object function, i.e. 
21

2
y MWα  here. In our implementation the constant can be estimated 

via numerical singular value decomposition (SVD) of the system matrix M.  
Another acceleration measures adopted here is based on the fact that W is derived from the 

orthonormal wavelet transform. So the left multiplication of W and WT
 is realized via the wavelet 

transform rather than direct matrix multiplication. 

3 Simulations 

We first describe the system configuration of our simulations. The object tomographic image 
is the high-contrast Shepp-Logan phantom with the resolution fixed at 256 × 256. We assume the 
pixel width to be 1, and the orbit radius of the ray source is 640. On the virtual detector, there are 
512 bins with the bin size fixed to 0.75. So under every angle, 512 transverse rays are simulated. 
Some of these rays don’t transverse the phantom and so the corresponding empty rows of weights 
are excluded from the system matrix M. 

As stated in Section 2.1, excluding those rows of M that are too correlated with some other 
row helps improve the RIP of the combined sensing matrix. This procedure is done by checking 
the row vectors one by one. For every incoming row of M, its correlation coefficients with all 
retained rows are calculated. If any correlation coefficient surpasses the threshold we set, the new 
row is discarded. 

With the system matrix in hand, the ideal projection data is generated simply by 0  
where x0 is the ideal phantom image. Then we add some Gaussian noise to the projection data on 

y Mx
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purpose with the SNR set to 80db. The level of Haar wavelet we used here is always three. Then 
the number of non-zero Haar coefficients of the 256 × 256 phantom is 3 823, which correspond to 
5.83% of all the 65 536 coefficients. 

3.1 Few-view sampling reconstruction 

In this case, we generated the system matrix M under 4 different numbers of projection 
angles that sparsely cover the full 360-degree range. In the 90-angle, 60-angle and 45-angle cases, 
we further exclude those too-correlated rows using the method stated above. The threshold used 
and the final total number of rows in the system matrices are listed in Table 1. Note that 
throughout the paper, pattern A corresponds to excluding only those empty rows, while pattern B 
corresponds to excluding both empty and correlated rows from the original system matrix. 

 

Table 1 The total number of rows of the system matrix in different cases 

Number of Projection Angles 90 60 45 30 

Pattern A 40 500 26 988 20 246 13 492 

Pattern B 27 023 20 112 13 421 — 

The threshold used for 90-B and 60-B is 0.33, and for 45-B is 0.27. These thresholds are selected so that the number of rows in case 
90-B, 60-B, and 45-B is similar to that in case 60-A, 45-A, and 30-A respectively. 

 
We then test the 7 different system matrices in the reconstruction simulation. The images 

reconstructed are shown in Fig.1, while the relative l1 errors of the recovered wavelet coefficients 
are listed in Table 2. 

 

 

      
(a)                   (b)                  (c)                  (d) 

Fig.1 The reconstructed phantoms under some different full-range cases: (a) 30-A; (b) 45-B; 
(c) 45-A; (d) The ground truth. The results under cases 90-A/B and 60-A/B are not 
shown here, since they are visually indistinguishable with both (c) and (d) 

Table 2 The relative l1 error of the recovered coefficient in different full-range cases 

Full-range cases 90-A 90-B 60-A 60-B 45-A 45-B 30-A 

#
0 0 11

    2.462 × 10
-3
 2.778 × 10

-3
4.236 × 10

-3
4.268 × 10

-3
1.760 × 10

-2
1.186 × 10

-1
 3.320 × 10

-1

 

From the results above, we have two conclusions about the RIP of the combined sensing 
matrix for CT reconstruction. First, sensing matrix with more rows tends to have small 
S-restricted isometry constant for larger S. This observation is straightforward from the definition 
of S  in (6), and is reflected by the improved quality from Fig.1 (a) to Fig.1 (c). Generally 

speaking, the sensing matrix should be wide but not too wide so that the support of signals it can 
recover could be larger. 
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The second conclusion is more relative to the analysis presented in Section 2.1. Comparing 
the case 45-B with the case 30-A, the heights of the two system matrices are almost the same; 
however, the quality of reconstructed phantom is improved perceivably from Fig.1 (a) to Fig.1 (b). 
Similar improvement can also be seen from the case 45-A to case 60-B as well as from case 60-A 
to case 90-B in the relative recovery error in Table 2. These results above strongly verified our 
previous analysis. 

3.2 Limited range reconstruction 

We also test the reconstruction performance of the method proposed under the limited-range 
circumstances. This time the number of projection angles is fixed to 60, while the coverage of 
these angles ranging from 60 to 240 degrees (with an interval of 30 degrees). For each spanning 
range the projection angles are still distributed uniformly. The total numbers of rows of all these 
system matrices are displayed in Table 3, from which it is easy to tell that the total number of 
rows doesn’t change a lot with the spanning range varying. 
 

Table 3 The number of rows of the system matrix in different coverage ranges 

Coverage range in degree 60 90 120 150 180 210 240 360 

Number of rows 27397 26986 26767 27135 26988 26847 27082 26988 

This time the number of projection angles is fixed to 60, and we didn’t exclude those rows that are too correlated with some other. 

 
As in the last section, the reconstructed phantoms are shown in Fig.2. Also shown for 

comparison is the Fig.1 (b) where the 60 projection angles span the full 360 degrees. The relative 
l1 recovery errors of the recovered coefficients are listed in Table 4. 

Table 4 The relative l1 error of the recovered coefficient in the limited-range case 

Coverage range in degree 60 90 120 150 180 210 240 360 

#
0 0 11

    5.981 × 10-1 4.385 × 10-1 3.017 × 10-1 1.219 × 10-1 1.398 × 10-2 5.206 × 10-3 4.357 × 10-3 4.268 × 10-3

    
            (a)                       (b)                         (c)                       (d) 

    
            (e)                        (f)                        (g)                        (h) 

Fig.2 The reconstructed phantoms with different ranges covered by 60 projecting angles:   (a) 60 degrees; (b) 90 
degrees; (c) 120 degrees; (d) 150 degrees; (e) 180 degrees; (f) 210 degrees; (g) 240 degrees; (h) 360 degrees 
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Fig.2 illustrates that the reconstruction quality becomes better and better as the range of 
coverage increases. This tendency actually also reflects our analysis in Section 2.1. To clarify this 
relationship, we should first note that, the projecting rays are denser in the covering range when 
the range is smaller. So the rows of the system matrix will be more correlated to each other, 
deduced from which we know that the RIP of the combined sensing matrix will be worse than that 
with the angles spread more separately. 

Another interesting observation obtained from Fig.2 and Table 4 has some relationship with 
the short-scan range in our simulation configuration. Since the fan angle here is of about 17 
degrees, so the short-scan range is of 197 degrees. In Fig.2 (e) where the 180-degree range is 
covered, some minor artifact can still be identified; however, when the range covered surpasses 
197 degrees as in Fig.2 (f) and (g), the reconstructed phantoms are visually the same with Fig.2 
(h). The relative recovery errors in Table 4 match this observation too. 

3.3 Simulations on random coefficients 

The phantom used in the simulations above is just a special case of the general images that 
have sparse expansion coefficients under the Haar wavelet transform. From this special case, we 
have already seen the varying recovery performance in different system configurations. 

 
(a) 

 
(b) 

Fig.3 Illustration of the average recovery error (in l1 sense) against the varying sparsity level of 
coefficients to restore. (a) corresponds to those full-range cases with different projection 
angles, while (b) corresponds to those limited-range cases where the number of the 
projection angles is fixed and the range of coverage varies 
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To illustrate this difference more convincingly, we randomly generate some sparse wavelet 
coefficients with the sparsity level increasing from 1% to 10%. Under each sparsity level, ten 
simulations are run and the relative l1 errors of recovery are recorded. In Fig.3 (a) the average 
relative errors are plotted against the sparsity level of the coefficients for different angle numbers 
under the full-range scanning. In Fig.3 (b) the same results are illustrated for different limited 
covering ranges. 

Results in Fig. 3 further verified our previous analysis about the RIP of the combined sensing 
matrix. First the “taller” wide sensing matrix tends to be able to recover “denser” sparse signals; 
this is explicated shown in Fig.3 (a). Then larger coverage in the limited-range case and excluding 
rows that are too correlative with others help to make the row vectors of the system matrix more 
irrelative, thus improving the RIP of the combined sensing matrix. 

4 Conclusion and future work 

In this paper, we proposed a more general frame (12) than TV minimization for CT 
reconstruction from insufficient data. The basic idea is to try to find some basis on which the 
object tomographic image can be represented or effectively appropriated with sparse coefficients, 
so that the image can be retrieved accurately by small number of measurements. 

To verify the feasibility of our proposal, we investigated one special instance where the 
expansion dictionary is fixed to be Haar wavelet basis. Conforming to the practical constraints of 
real CT system, we analyzed and brought up principles about how to improve the RIP of the 
combined sensing matrix. The principles were verified by following simulations. 

For future work, one direction is to pursue deeper comprehension about the RIP of the 
combined sensing matrix. Such analysis is interesting in the sense that M is constrained by 
physically realizable hardware platform while W can be chosen from multiple options. Another 
direction is to apply the proposed method to real tomographic image reconstruction. For different 
reconstruction object, the selection of W can be very different. How to choose a suitable W is 
expected to depend highly on the specific applications. 
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关于不充分投影数据下的二维扇形束 CT 重建 
梁文轩，胡广书 

（清华大学生物医学工程系，北京 100084） 

摘要：在医学和其他的很多 CT 应用中，一个重要问题是如何从不充分的投影数据中重建出断层图像。近

年来由于新兴的压缩传感理论，Total Variation 最小化方法在求解这一问题中重新获得了重视。本文将

该方法推广成一类更一般的不充分投影 CT 重建算法。这一类重建算法同样基于压缩传感理论，但是更加

灵活，能适用于不同的应用背景。针对该类算法中的一个特例进行的理论分析和算法仿真展现了该算法的

应用潜力。 

关键词：CT 重建；压缩传感；少投影重建；有限角度重建 
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