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ABSTRACT: Purpose: A brief review on recent advances in POCS agorithms for image
reconstruction with a preference towards practical applications and report relevant convergence
results in various formulations and topologies for the consistent and inconsistent cases.
Mathematical details are minimized for a wide readership. Method: POCS based iterative
algorithms. Result: Various recent results and applications are presented.Conclusion: The
powerful algorithmic formulation of the POCS scheme will find various important applications in
image reconstruction
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1 IntroductionPOCS Algorithmsfor I mage Reconstruction

Image reconstruction arises in many fields of applications. Imaging systems, modeled originally
in continuous anaytic functional equations, can usualy be discretized into linear systems of
equations

Ax=b )
where the observed data b = (bl,L b )T R" , the original image X = (Xl,L Xy )T RN
A= (AJ) anon-ze'o M~ N matrix. The problem isto reconstruct theimage X from the

observed data b . A solution is not feasible by a conventional method with complicated
computation involving the matrix A, because of the ill-posedness of the problem, noisy data b,
unstructured imaging matrix A, and huge data dimensions in practice. Instead, iterative methods,
such as the algebraic reconstruction technique (ART), etc., are developed for efficient image
reconstruction.

The convex set theoretic image recovery problem is to produce an estimate of the origina

image in the intersection of a family of closed and convex sets {C .}, in area Hilbert space

H , which represents the a priori knowledge about the problem, such as non-negativity and bound
constraints etc., and information from the data. The reconstruction problem is then reduced to the
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convex feasibility problem (CFP):
Findx 1 C=1 C

1£iEm
2 Orthogonal POCS Algorithms

The mostly used method to solve (2) is called projections onto convex sets (POCS), which
generates an image as the limit of asequence { X} of projections onto the sets, i.e.,

Xn+l = Pqn] (Xn) (3)
where [n] =nmod(m) +1, R, istheorthogonal projectionfrom H onto C for 1£i £ m.

i )

When C. isthe hyperplane C, :{XT H :<X,ai> :bi} for 1£i £Em=M ,where a'isthe i-

throw of A, the resultant algorithm is the ART . Detailed accounts of POCS can be found in [3].
The POCS agorithm can be put in a more general form [1], to accommodate various relaxation,
weighting and block-iterative schemes. Let

R™ =1d+I " (R, - Id), @)
where | (VT [0,2] isarelaxation parameter and |d isthe identity map. A relaxation strategy is
called under-relaxationif | ™1 [0,1], over-relaxationif | T [12], and unrelaxed if | ™ =1,
respectively. Let

A = ém wmRM 5)

i=1

m
where {w™}1 [0,]] isaweight, i.e, g W™ =1. The general form of POCS iss defined as

i=1
x,1 H arbitrary, x..,=A"(x). (6)
The set of active indices is defined to be 1™ ={iT {1,2,L ,m} :Wi(”) >0} . We say that an

index | isactive at iteration N or N is activated for i if Wi(”) >0. The way that indices are
chosen to be active is called a control. The control used in (3) is called cyclic contral. If thereis an
integer P> 0 such that

it 1@y 1™ gL U™ for everyindexiandn3 0, ©)
the control is called intermittent or P - intermittent. Cyclic control is a specia case of intermittent
control. Although mathematically intriguing, controls that are different from the intermittent
control seems to be of little use for applications [1].

The primary question with any iterative scheme is its convergence behavior, which
characterizes the computational stability of the scheme, hence the reconstructed image quality.
Extensive work has been done on the convergence of POCS agorithms [1,3]. We list two genera
results in the following. To facilitate the presentation, let

m
" =W O (2 § w1 D). ®
j=1
The following theorem guarantees the weak convergence of the sequence {X } .

Theorem 1.([1]) If theintersection set C isnot empty and lim (" > O for every index

n:nactivefori

i , then the sequence {x } converges weakly to some point X1 C.
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In some applications, the reconstruction problem arises in infinite dimension. In such problems,
a strong convergence result for analytic functional iterative algorithms is often much more
desirable than weak convergence. The importance of the strong convergence is aso relevant when
the algorithm is implemented in a finite dimensional setting through discretization of its original
infinite dimensiona analytic model. The performance of the algorithm is closely related to the
discretized counterpart and its convergence behavior. The following is a result that guarantees
strong or norm convergence.

Theorem 2.([1]) If theintersection set C is not empty and there is some € > 0 such that
O<e£l™E£2-eforal nandindex i activeat n.If theinterior of C isnot empty

or H isfinite dimensional , then the sequence {X} converges strongly to some point x1 H.If
é nm(”) = +¥ for everyindex i,then xI C.

The above results is established under the assumption that the intersection set C is not empty,
i.e, the constraints C, are consistent. In the inconsistent case, if one of the sets is bounded, there
wigm Such that P(y.)=V;, P(y. )=V, for 2Ei£m. Moreover, the
cyclic subsequence {)(,m+i}n30 convergesto Y, 1 C, cf., [4] and the references therein. The

inconsistent case was recently studied in [4,6]. In [4], the exact feasibility problem (2) was replaced
by the weighted least-squares feasibility problem

exists points {Y.}

Minimize ®(x) = émwid(x, C). 9)

i=1

m
Theorem 3.([4]) Let {Wi}lmm be strictly convex weights, i.e., é w; =landw, >0 for
i=1

1£i £m. Assume that one of the sets {C},;. ., isbounded. Then, for any X, T H , every
sequence of iterates { X } generated by

a5 o]
X1 = X +1 VR WP, (%) - %, (10)
ei=1 (%]
converges weakly to a minimize of O(x) where 0<e £1 ™ £2- e for some > 0.
Before we turn to the general POCS algorithms based on non-orthogonal projection, we would
like to mention several important aspects about the orthogonal projection based POCS algorithms,
not covered in this review due to space limit: (&) the strong convergence was extensively studied in

[1] based on the regularity of the convex sets {C.} . .; Recent progress is to establish weak-to-
strong convergence by modifying the projections at each projections [2]. (b) the convergence rate
of POCS was studied in [1] based on the linear regularity of the convex sets {C.},; ., Where it
was proved that a linear convergence rate of the POCS algorithm could be achieved; (c) it is
possible to extend the relaxation range beyond the interval [0,2] and improve the convergence
rate of the algorithm [5]. Interested readers may refer to the references for details.

3 General Projectionsand POCS

The POCS agorithms in the preceding section utilizes the orthogonal projection induced from
the underlying Hilbert space. The generalized distances and projections were first proposed by
Bregman and has been studied extensively in the past decades [3].

Le H =R" and S be a nonempty, open, convex set, such that the closure Si L, where
L1 H isthedomainof afunction f:L ® R.Assumetha f1 C*(S).From f , construct
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the function D; (:S S® R by

D (%)= (- f(y)- (NF(y),x- y). (11)
Thisfunction is called a generalized distance function or D -function. The partial level sets of
D, isdefinedas L' (x,a2)={yl S:D,(x y)£a}. Theorigina definition of Bregman
functions was recently simplified in [7].
Definition. (Bregman Functions) Under the above assumptions, the function f iscalled a
Bregman function if the following conditions hold: (a) f is continuous and strictly convex on §;
(b) for every a1 Rand xI R", L'(x.a) isbounded; (¢)if y, T S,forall n3 0,and
limy =y  then limD,(y,y,)=0; (d)if {x}1 Sisaconvergent sequence with limit
XT 9, then lim(Nf (x,),x - x,)=0.

We denote the family of Bregman functions by B(S), refer to theset S as the zone of the
function f . It can be proved that D, (x,y)3 O for (X, y)I S” Sand D, (x,y) =0 if and
only if X=y.Hence, D, (X, y) may be used to measure the distance between X and Yy in
some generalized sense. We use the generdized distance D, (X,y) to define generalized
projec_tion. It can be proved that for any closed convex set Wi R" s.JcD that the intersection
Wi S isnot empty, and for every y1 S, thereexistsaunique X 1 Wi S such that

D, (X',y) =min{D, (x,y):x] Wi S}. (12)
X is called the generalized projection of the point Yy onto theset W and denoted by P, (Y) .
Two typical examples of Bregman functions are: (a) the function  (X) =|| x>/ 2, with
L=S=R",and D,(X,Y) isthen D, (x,Yy)=||x- y|’/2.Thegenera projection in this
case is the ordinary orthogonal projection. (b) the entropy function f (X) =- é X logx; , with
L =R} and S=R],. Thedistancefunction D (X,Y) isthen the Kullback-Leibler entropy,

D (xy)=a ,[%logg+Y; - x].

With the generalized projection defined in this way, we can formulate unrelaxed POCS
algorithms asin [3]. We have the following resuilt. )
Theorem 1.([3]) Assume that theintersectionset C isnotemptyand f | B(S) such that

C1 S isnotempty. If for everyyl S, P (y)1 C,, for everyindex i, then the sequence {X }

convergesto somepoint XI C.

For sometime, it is not clear how to introduce relaxation into the POCS algorithms based on the
generalized projection for convex sets that are not linear. Recently, Censor and Gabor provided a
method to construct under-relaxation for this approach [8]. The practical importance of relaxation
is also demonstrated through a CT image reconstruction example. Please refer to [8] for details.

4 Conclusion

We have reviewed recent advances in POCS algorithms and discussed both the orthogonal and
generalized projection based algorithms. We have presented the orthogonal projection based
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algorithms in the form of general weighted relaxation, which includes block iterative and
simultaneous versions of the agorithm, and then reported relevant convergence results in three
theorems, for the consistent and inconsistent cases, in the weak and strong topologies, respectively.
For the generalized projection based algorithms, we have discussed basic concepts and examples,
presented the convergence result for the unrelaxed algorithm, and reported recent results in
relaxation and its applications in CT image reconstruction. It is certain that the powerful
agorithmic formulation of the POCS scheme will find various important applications in image
reconstruction.
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