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ABSTRACT: Purpose A brief review on recent advances in POCS algorithms for image
reconstruction with a preference towards practical applications and report relevant convergence
results in various formulations and topologies for the consistent and inconsistent cases.
Mathematical details are minimized for a wide readership. Method: POCS based iterative
algorithms. Result: Various recent results and applications are presented.Conclusion: The
powerful algorithmic formulation of the POCS scheme will find various important applications in
image reconstruction
Key words: POCS, Iterative Algorithm, Convergence, Image reconstruction.

ISSN 文章编号 1004-4140 2003 01-0051-5     中图分类号 TP301.6     文献标识码 A

  
 基于正交投影和广义投影 POCS 算法的研究进展
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 北京大学数学学院信息科学系, 中国北京 100871; 国家自然科学基金委信息科学部 , 中国北京

100085.
摘要: 目的 在于提请有关读者关注近年来关于图象重建的凸集投影算法的进展,这一重要的方法及应用 方

法主要讨论了基于正交投影和广义投影的算法 对基于正交投影的算法 并讨论了一般形式的加权松弛格

式 这包含了分块格式和同时格式 并以三个定理报道有关的算法收敛性结果 结果 分别包含了相容和不

相容条件和弱强收敛下的结果 对基于广义投影的算法 有关的基本概念和例子 基本算法的收敛性结果

结论 报道最近关于引入松弛系数的工作和在 CT 图象重建中的应用

1 IntroductionPOCS Algorithms for Image Reconstruction

Image reconstruction arises in many fields of applications. Imaging systems, modeled originally
in continuous analytic functional equations, can usually be discretized into linear systems of
equations

bAx =                                                   (1)

where the observed data ( ) MM Rbbb ∈= ,,1 Λ , the original image ( ) N
M Rxxx ∈= ,,1 Λ ,

( )ijAA =  a non-zero NM ×  matrix. The problem is to reconstruct the image x  from the

observed data b . A solution is not feasible by a conventional method with complicated
computation involving the matrix A , because of the ill-posedness of the problem, noisy data b ,
unstructured imaging matrix A , and huge data dimensions in practice. Instead, iterative methods,
such as the algebraic reconstruction technique (ART), etc., are developed for efficient image
reconstruction.

The convex set theoretic image recovery problem is to produce an estimate of the original
image in the intersection of a family of closed and convex sets miiC ≤≤1}{  in a real Hilbert space

H , which represents the a priori knowledge about the problem, such as non-negativity and bound
constraints etc., and information from the data. The reconstruction problem is then reduced to the
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convex feasibility problem (CFP):

i
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 Find Ι                                       (2)

2 Orthogonal POCS Algorithms

The mostly used method to solve (2) is called projections onto convex sets (POCS), which
generates an image as the limit of a sequence }{ nx  of projections onto the sets, i.e.,

)(
][1 nCn xPx

n
=+                                            (3)

where 1mod][ += (m) nn , 
iCP is the orthogonal projection from H  onto iC for mi ≤≤1 .

When iC is the hyperplane { }ii
i baxHxC =∈= ,:  for Mmi =≤≤1 , where ia is the i -

th row of A , the resultant algorithm is the ART. Detailed accounts of POCS can be found in [3].
The POCS algorithm can be put in a more general form [1], to accommodate various relaxation,
weighting and block-iterative schemes. Let
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where ]2,0[)( ∈n
iλ  is a relaxation parameter and Id  is the identity map. A relaxation strategy is

called under-relaxation if ]1,0[)( ∈n
iλ , over-relaxation if ]2,1[)( ∈n

iλ , and unrelaxed if 1)( =n
iλ ,

respectively. Let
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where ]1,0[}{ )( ⊂n
iω  is a weight, i.e.,∑
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)( 1ω . The general form of POCS is defined as

)(     arbitrary, )(
10 n

n
n xAxHx =∈ + .                         (6)

The set of active indices is defined to be }0:},,2,1{{ )()( >∈= n
i

n miI ωΛ . We say that an

index i  is active at iteration n  or n  is activated for i  if 0)( >n
iω . The way that indices are

chosen to be active is called a control. The control used in (3) is called cyclic control. If there is an
integer 0>p  such that

,0 and index every for  ,)()1()( ≥∈ ++ niIIIi pnnn ΥΛΥΥ         (7)
the control is called intermittent or p - intermittent. Cyclic control is a special case of intermittent

control. Although mathematically intriguing, controls that are different from the intermittent
control seems to be of little use for applications [1].

The primary question with any iterative scheme is its convergence behavior, which
characterizes the computational stability of the scheme, hence the reconstructed image quality.
Extensive work has been done on the convergence of POCS algorithms [1,3]. We list two general
results in the following. To facilitate the presentation, let
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The following theorem guarantees the weak convergence of the sequence }{ nx .

Theorem 1.([1]) If the intersection set C  is not empty and 0lim )(
for  active : >n

iinn µ for every index

i , then the sequence }{ nx  converges weakly to some point Cx ∈ .
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In some applications, the reconstruction problem arises in infinite dimension. In such problems,
a strong convergence result for analytic functional iterative algorithms is often much more
desirable than weak convergence. The importance of the strong convergence is also relevant when
the algorithm is implemented in a finite dimensional setting through discretization of its original
infinite dimensional analytic model. The performance of the algorithm is closely related to the
discretized counterpart and its convergence behavior. The following is a result that guarantees
strong or norm convergence.
Theorem 2.([1]) If the intersection set C  is not empty and there is some 0>ε  such that

ελε −≤≤< 20 )(n
i  for all n  and index i  active at n . If the interior of C  is not empty

or H is finite dimensional , then the sequence }{ nx  converges strongly to some point Hx ∈ . If

∑ +∞=
n

n
i

)(µ for every index i , then Cx ∈ .

The above results is established under the assumption that the intersection set C  is not empty,
i.e., the constraints iC  are consistent. In the inconsistent case, if one of the sets is bounded, there

exists points { } miiy ≤≤1  such that 11 )( yyP m = , iii yyP =− )( 1 , for mi ≤≤2 . Moreover, the

cyclic subsequence { } 0≥+ nimnx  converges to ii Cy ∈ , c.f., [4] and the references therein. The

inconsistent case was recently studied in [4,6]. In [4], the exact feasibility problem (2) was replaced
by the weighted least-squares feasibility problem
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Theorem 3.([4]) Let { } mii ≤≤1ω  be strictly convex weights, i.e., ∑
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1ω and 0>iω  for

mi ≤≤1 . Assume that one of the sets miiC ≤≤1}{  is bounded. Then, for any Hx ∈0 , every

sequence of iterates }{ nx  generated by
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converges weakly to a minimize of )(xÖ ,where ελε −≤≤< 20 )(n  for some 0>ε .

Before we turn to the general POCS algorithms based on non-orthogonal projection, we would
like to mention several important aspects about the orthogonal projection based POCS algorithms,
not covered in this review due to space limit: (a) the strong convergence was extensively studied in
[1] based on the regularity of the convex sets miiC ≤≤1}{ ; Recent progress is to establish weak-to-

strong convergence by modifying the projections at each projections [2]. (b) the convergence rate
of POCS was studied in [1] based on the linear regularity of the convex sets miiC ≤≤1}{ , where it

was proved that a linear convergence rate of the POCS algorithm could be achieved; (c) it is
possible to extend the relaxation range beyond the interval ]2,0[  and improve the convergence
rate of the algorithm [5]. Interested readers may refer to the references for details.

3 General Projections and POCS

The POCS algorithms in the preceding section utilizes the orthogonal projection induced from
the underlying Hilbert space. The generalized distances and projections were first proposed by
Bregman and has been studied extensively in the past decades [3].

Let NRH =  and S  be a nonempty, open, convex set, such that the closure Λ⊂S , where

H⊂Λ  is the domain of a function Rf →Λ: . Assume that )(1 SCf ∈ . From f , construct
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the function RSSD f →×⋅⋅ :),(  by

yxyfyfxfyxD f −∇−−= ),()()(),( .                    (11)

This function is called a generalized distance function or D -function. The partial level sets of

fD  is defined as }),(:{),( αα ≤∈= yxDSyxL f
f . The original definition of Bregman

functions was recently simplified in [7].

Definition. (Bregman Functions) Under the above assumptions, the function f  is called a

Bregman function if the following conditions hold: (a) f is continuous and strictly convex on S ;

(b) for every R∈α  and NRx ∈ , ),( αxLf  is bounded; (c) if Syn ∈ , for all 0≥n , and
*

n yy =lim , then 0),(lim =n
*

f yyD ; (d) if Sxn ⊂}{ is a convergent sequence with limit

Sx ∂∈* , then 0),(lim =−∇ n
*

n xxxf .

We denote the family of Bregman functions by )(SB , refer to the set S  as the zone of the

function f . It can be proved that 0),( ≥yxD f  for SSyx ×∈),( and 0),( =yxD f  if and

only if yx = . Hence, ),( yxD f  may be used to measure the distance between x  and y  in

some generalized sense. We use the generalized distance ),( yxD f  to define generalized

projection. It can be proved that for any closed convex set NR⊂Ω  such that the intersection

SΙΩ  is not empty, and for every Sy ∈ , there exists a unique Sx ΙΩ∈*  such that

}:),(min{),( * SxyxDyxD ff ΙΩ∈= .                     (12)
*x is called the generalized projection of the point y  onto the set Ω  and denoted by )(yPΩ .

Two typical examples of Bregman functions are: (a) the function 2/||||)( 2xxf = , with
NRS ==Λ , and ),( yxD f  is then 2/||||),( 2yxyxDf −= . The general projection in this

case is the ordinary orthogonal projection. (b) the entropy function ∑−=
j jj xxxf log)( , with

nR+=Λ  and nRS ++= . The distance function ),( yxD f  is then the Kullback-Leibler entropy,

∑ −+=
j jjy

x

jf xyxyxD
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j ]log[),( .

With the generalized projection defined in this way, we can formulate unrelaxed POCS
algorithms as in [3]. We have the following result.
Theorem 1.([3]) Assume that the intersection set C  is not empty and )(SBf ∈  such that

SC Ι  is not empty. If for every Sy ∈ , iC CyP
i

∈)( , for every index i , then the sequence }{ nx

converges to some point Cx ∈ .
For some time, it is not clear how to introduce relaxation into the POCS algorithms based on the

generalized projection for convex sets that are not linear. Recently, Censor and Gabor provided a
method to construct under-relaxation for this approach [8]. The practical importance of relaxation
is also demonstrated through a CT image reconstruction example. Please refer to [8] for details.

4 Conclusion

We have reviewed recent advances in POCS algorithms and discussed both the orthogonal and
generalized projection based algorithms. We have presented the orthogonal projection based
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algorithms in the form of general weighted relaxation, which includes block iterative and
simultaneous versions of the algorithm, and then reported relevant convergence results in three
theorems, for the consistent and inconsistent cases, in the weak and strong topologies, respectively.
For the generalized projection based algorithms, we have discussed basic concepts and examples,
presented the convergence result for the unrelaxed algorithm, and reported recent results in
relaxation and its applications in CT image reconstruction. It is certain that the powerful
algorithmic formulation of the POCS scheme will find various important applications in image
reconstruction.
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