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Abstract: In the nondestructive detection with industrial CT, due to the fact that the actual X-ray 

source has a wide spectrum, slices reconstructed by most existing reconstruction algorithms will suffer 

from beam hardening artifacts. It will degrade image quality greatly, affecting important CT image 

task such as CT diagnosis and so on. In this study, we propose a method to suppress beam hardening 

artifacts based on deep learning. We train a convolutional neural network using a large number of 

images with beam hardening artifacts as input and the corresponding artifact-free images reconstructed 

at a fixed energy as output to establish the mapping between image with beam hardening artifacts and 

artifact-free image for suppressing beam hardening artifacts. Experimental results show the 

effectiveness of the proposed method in the beam hardening artifact reduction of CT images. 
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X-ray CT has been widely used in medical diagnosis and industrial nondestructive detection 

field
[1]

. Due to the wide energy spectrum of actual X-ray source, the low-energy photons are easier 

to be absorbed than high-energy photons so the average energy of the photons after passing 

through the object become higher. As a result, the CT images directly reconstructed by the most 

existing algorithms which are based on the assumption that the X-ray source is monochromatic 

will show image artifacts. These artifacts are called beam hardening artifacts. Beam hardening 

artifacts seriously affect CT diagnosis or industrial detection results.  

Beam hardening artifacts have been a research hotspot for decades and many artifact 

reduction strategies are developed. These methods can roughly be divided into four categories: 

physical filtration, linearization, dual-energy systems and statistical polychromatic reconstruction.  

Physical filtration method reduces the artifacts by adding a filter between the X-ray source 

and detector to absorb the low-energy photons of the beam
[2]

. However, since some photons are 

absorbed, the signal to noise ratio also decreases. If the filter is not thick enough, beam hardening 

artifacts still remain. 

Linearization method reduces beam hardening artifacts by transforming the measured 

polychromatic attenuation data into monochromatic attenuation data
[3-5]

. Usually the phantom 

composed of the same material as the specimen is required to calibrate the mapping from 

polyenergetic data to monoenergetic data. Some Linearization method may estimate the mapping 
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from the reconstructed slices directly, but segmentation procedure is required. The quality of 

corrected slices is very sensitive to the segmentation accuracy, and moreover, the correction 

model should be calculated again once the scanning spectrum has been changed. 

In dual-energy methods
[6-8]

, the attenuation coefficient is modeled as a linear combination of 

two basic functions. The most commonly used basis function is the function related to the 

photoelectric and the Compton Scatter. Projection data at different energies are required. 

However, this lead to the need of two X-ray sources and detectors or two scans. 

Statistical polychromatic reconstruction method reduces beam hardening artifacts by 

accounting for the polychromatic nature of X-ray source
[9]

.The method requires two steps: first 

the physical phenomena of data formation is modeled, then the image is reconstructed by a 

statistical iterative technique. Chen et al
[10]

 proposed to separate the polychromatic energy 

spectrum into several sub-energy spectrum and then make parameter estimation with the statistical 

method on the basis of traditional reconstruction algorithm to remove the cupping artifact. Van 

Gompel et al
[11] 

got several materials by segmentation based on density and divide the energy 

spectrum into several bins. The attenuation coefficient of materials at every energy bin can be 

obtained by minimizing the differences between the polychromatic projection and the simulated 

projection. Elbakri et al
[12] 

proposed a method with no segmentation process. They first modeled 

the attenuation coefficient of each pixel as the product of its unknown density and a weighted sum 

of energy-dependent mass attenuation coefficients. A penalized-likelihood function was formulated 

and the unknown density of pixel was calculated by iterative procedure. The statistical polychromatic 

reconstruction methods are often time-consuming, which limits its application in practice. 

Besides above methods, there are some other beam hardening artifact reduction methods. 

Brabant et al
[14]

 proposed an artifact correction method based on the simultaneous algebraic 

reconstruction technique (SART) in which the polychromatic project process was included. Park 

et al
[15]

 derived an expression of difference between the original uncorrected image and the ideal 

corrected image related to the objects of high density. And the method removed beam hardening 

artifacts without the use of sinogram data. However, intensive computation was often required. 

The existing methods to reduce beam hardening artifacts have achieved good 

performance in some cases. But most of the aforementioned methods have some problems in 

practical application. It is necessary to search a new method to reduce beam hardening 

artifacts. Recently, Deep learning, which can learn many features from images using 

multilayer network has achieved a great success in the field of computer vision such as image 

semantic segmentation, image de-noising, super-resolution and so on
[16-18]

. In medical 

imaging, the great achievements based on convolutional neural network in CT image 

segmentation
[19]

, organ classification
[20]

, image reconstruction
[21]

, low-dose CT image 

de-noising
[22]

, and limited angle CT image artifacts suppressing
[23]

 have shown that deep 

learning is an effective way to solve some traditional CT problems. 

Recently, Park et al
[24-25]

 have shown that beam hardening artifacts have some characteristics. 

Streaking artifacts occur along the lines tangent to the boundary of two metallic objects. At the 

same time, cupping artifacts are characterized that in a homogeneous object, the CT value of inner 

region is lower than the outer. So the beam hardening artifacts show some common 

characteristics. Since convolutional neural network can adaptively learn features from images, 

which is suitable for beam hardening artifact reduction. 

Inspired by the amazing achievements of deep learning in image processing and the fact that 

beam hardening artifacts have some characteristics, we propose a method to reduce beam 

hardening artifacts with deep convolutional neural network. The inputs of the network are images 

reconstructed with poly-energetic data by FBP algorithm and the output are artifact-free images 
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reconstructed at a fixed energy. The proposed method neither needs hardware filter nor 

dual-energy scanning system. A large number of data are simulated to train the network, and the 

trained network is used to reduce beam hardening artifacts of images reconstructed by real CT 

system. Furthermore, compared with linearization method, the convolutional neural network 

trained with a large number of data can learn and predict the law of artifacts, which makes the 

trained network work for the artifact reduction of the same material at each spectrum. 

The rest of the paper is organized as follows. In section 1 the method is given in detail. In 

section 2, experimental results are presented. Finally, the conclusion is given in section 3. 

1 Methods 

Beam hardening is a process that the average energy of X-ray increases after the beam 

propagates through a material since the X-ray of lower energy is preferentially absorbed. The 

slices which are reconstructed based on linear Radon model will show beam hardening artifacts. 

In this section, firstly the reason and characteristics of beam hardening artifacts are introduced. Then 

convolutional neural network based beam hardening artifact reduction method is presented in detail. 

1.1 Beam hardening artifact  

According to Beer law, the intensity of mono-energetic X-ray passing through a single 

material can be expressed by 

0 exp( ) I I x                               (1) 

Where 
0I is the initial intensity and I is the intensity after the X-ray beam passes through the 

object, μ is attenuation coefficients of the material, x is the length traversed through the material 

by the X-ray. But when the X-ray is ploy-energetic, the attenuation coefficients μ is not a fixed 

value and varies with the energy. So Eq.(1) becomes: 
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Where
0 ( )I E  is the initial intensity of X-ray beam at energy E. Most of the existing 

reconstruction algorithms presume that the X-ray source is mono-energetic and the attenuation 

coefficient is independent of energy. Then 

the slices reconstructed by these algorithms 

with polychromatic projection data will 

show artifacts, which are called beam 

hardening artifacts. Ideally, there is a 

linear relationship between the projection 

data and the thickness of X-ray passing 

through in the case of the single material 

object. But the relationship is not linear in 

practice. The thicker the X-ray passes 

through the object, the greater the 

deviation between the polychromatic 

projection and the ideal monochromatic 

projection is. The relationship between 

real projection (p) and the thickness (x) of 

 
Fig.1 The relationship between real projection and the 

thickness of X-ray passing through the object 
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X-ray passing through the object is shown in Fig.1. 

Beam hardening artifacts have two main manifestations in tomographic images: cupping 

artifacts and streaking artifacts. The display of the cupping artifacts is that the gray value of 

region near the edge is higher than the gray value of the center region. And the shape of the 

reconstructed slice of a homogeneous cylinder is similar to the bottom of a cup. Streaking artifacts 

display as the dark and bright streaks between objects, especially severe in the region tangent to 

the boundaries of two objects. The cupping artifacts and streaking artifacts are displayed in Fig.2. 

If the slice is composed of one cylinder at the center of the image, as shown in Fig.3(a), the 

polychromatic projection data at the edge of the cylinder can be approximately equal to the ideal 

monochromatic projection. So the gray value of the reconstructed region at the edge of the cylinder is 

approximately equal to the gray value reconstructed with the ideal monochromatic projection. But at 

the center of the cylinder there is big difference between the polychromatic and monochromatic 

projection. Then the gray value at the central region of the cylinder is smaller than that of the edge 

region. Since all the projections are back projected, cupping artifacts will appear. Fig.3 (b)-(c) shows 

the characteristics of cupping artifacts. The larger cylinder diameter leads to the smaller gray value.  

 

  
(a) Cupping artifacts (b) Streaking artifacts 

Fig.2 Visual display of cupping and streak artifacts 

 

 

 

 

 

 

 

 

 

 

(a) Illustration of analysis to the 
cause of cupping artifact. 

(b) Slice of cylinder with small diameter (c) Slice of cylinder with large diameter 

Fig.3 Illustration of analysis to the cause of cupping artifact and the characteristics of cupping artifacts 

 

Park et al.
[24-25]

 have demonstrated that the shape of metal streaking artifacts are mainly 

caused by the metal region with polychromatic X-ray source. The beam hardening correction 

factor of discrepancy between polychromatic projection and the Radon transform of the image is 
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derived. They proved mathematically that streaking artifacts occur along the lines tangent to 

boundaries of two metallic objects. The reconstructed slices composed of two cylinders of different 

distances with streaking artifacts are shown in Fig.4. 

 

   
(a) Reconstructed slice in which one 

cylinder is close to another 
(b) Reconstructed slice in which two 

cylinder’s distance is between (a) and (c) 
(c) Reconstructed slice in which one 

cylinder is far from another 

Fig. 4 Reconstructed slice with different distance between two cylinders 

 

It can be seen from the above two groups of simulation that the severity of the cupping 

artifacts is related to the thickness of the X-rays passing through the object. The thicker X-ray 

passes through the object, the smaller gray value of the reconstructed object is. The severity of the 

streaking artifacts is related to the distance between the two objects in the slice. The closer 

distance between the two cylinders results in more serious streaking artifacts.  

1.2 Deep learning based beam hardening artifact reduction 

The above simulations show that the cupping artifacts and streaking artifacts have certain 

regularity. In consideration of characteristics of beam hardening artifacts as shown in Fig.2-4, 

features about artifacts can be extracted from the reconstruction slices via convolution, and then 

reconstruction slices can be rectified by nonlinear filtering the features after mapping to a higher 

dimension. If the training data is enough, the convolutional neural network can learn this nonlinear 

filtering ( non-linear mapping ) to reduce beam hardening artifacts. 

Although the network with more layers will show better performance, it will cost more time 

on training. And three layers network can learn enough features of artifacts from slices, so here we 

choose a convolutional neural network with three layers. These layers are all convolutional layers. 

Fig.5 shows the architecture of the network.  

 

 
Fig.5 The architecture of convolutional neural network used in this paper. 

 

The images with beam hardening artifacts reconstructed by FBP algorithm are the input of the 

network and the artifact-free images reconstructed at a fixed energy are the output. These three 

layers can be seen as the procedures of feature extraction, non-linear filtering, and feature 

combination. Process of each layer is formulated as follows: 
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First    layer: 
1 1 1( ) ReLU( * ) f x xW b  (3) 

Second  layer: 
2 2 2( ) ReLU( * ) f x xW b  (4) 

Third   layer: 
3 3 3( ) * f x xW b  (5) 

Here x denotes the input of each layer and
1( )f x ,

2 ( )f x ,
3( )f x are outputs of each layer,

1W , 

2
W ,

3
W denote the weights of each layer and 

1
b ,

2
b ,

3
b  are the biases respectively. The ReLU 

activation function is adopted in the network in order to reduce the interdependence of weights of 

the network and accelerates the convergence speed of training the network. 

The parameters of the network for beam hardening artifact reduction of homogeneous object 

are described as follows. The first layer is the feature extraction layer. In this paper, 64 

convolution kernels in size of 9 ×9 are selected to convolve 

with the input image and the sliding step of the convolution 

kernels is 1. Thus, 64 different feature maps will be obtained 

after the transformation of the ReLU activation function. 

The second convolution layer is a nonlinear mapping 

layer. 32 convolution kernels in size of 3 ×3 are convolved 

with the output of the first layer and 32 different feature 

maps are obtained after ReLU nonlinear transformation. The 

third layer is the feature combination layer, using a 5 ×5 

kernel to convolve with the output of the second layer and 

the final output is obtained. Fig.6 shows the input image 

with beam hardening artifacts.  

The beam hardening artifact reduction problem is solved by three steps: feature extraction, 

nonlinear mapping and result reconstruction. 

The three steps are introduced as follows. 

1.2.1 Feature extraction 

The first convolution layer is to extract a series of features of the input slice including the 

edges, angles, contours and other information of the input slice. At the same time, features of the 

dark streaking, bright streaking and cupping artifacts are extracted too.  

Fig.7 shows the output images after the first layer, and some output images such as (8), 

(16), (37), (44), (64) extract the edge, angle and contour information. Some output images such 

as (23) and (27) extract the dark streaking artifacts, similarly some extract the bright streaking 

artifacts such as (34), (58), and some complete the information extraction of cupping artifacts 

such as (17), (33), (60).  

1.2.2 Nonlinear mapping.  

The second convolution layer maps a series of features extracted from the first layer to a 

higher dimension, and the operation of this layer has a stronger effect on the beam hardening 

artifact reduction. In this layer, the artifacts and the objects are almost separated. The output of 

the second layer is shown in Fig.8, where some output images show the information about 

artifacts such as (12), (26), (30), other images such as (24) rarely contain the information of 

beam hardening artifacts. 

1.2.3 Result reconstruction. 

This layer combines the extracted image features to reconstruct the final result which 

does not contain beam hardening artifacts. The image after hardening artifact reduction is 

shown in Fig.9. 

 
Fig.6 The input image with beam 

hardening artifacts 
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(1)               (2)               (3)             (4)               (5)              (6)              (7)              (8) 

 

(9)              (10)              (11)            (12)              (13)             (14)             (15)             (16)           

 

 (17)             (18)              (19)            (20)              (21)             (22)             (23)             (24) 

 

(25)             (26)              (27)            (28)              (29)             (30)             (31)             (32) 

 

(33)             (34)             (35)             (36)              (37)             (38)             (39)             (40) 

 

(41)            (42)              (43)              (44)             (45)             (46)             (47)              (48) 

 

      (49)             (50)              (51)              (52)             (53)             (54)              (55)            (56) 

 

(57)             (58)               (59)             (60)             (61)             (62)              (63)            (64) 

Fig.7. Results of input image after the first convolutional layer 
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(1)                (2)              (3)               (4)              (5)              (6)              (7)              (8) 

 

(9)              (10)              (11)             (12)             (13)             (14)             (15)            (16) 

 

(17)             (18)              (19)            (20)              (21)              (22)             (23)            (24) 

 

(25)             (26)              (27)             (28)              (29)            (30)              (31)            (32) 

Fig.8 Some results of the second convolutional layer 

 

2 Experiments and Results 

In this section, dataset preparation is introduced in detail. Then experimental results tested 

with simulated data and real data are presented. 

2.1 Dataset preparation 

From the analysis above we can see that the size of object affects the severity of cupping 

artifacts and the distance of two objects also influences severity of streaking artifacts. To make the 

convolutional neural network learn the regularity of beam 

hardening artifacts, the objects in training data should 

include enough variations on the size, distance and 

locations. Due to the fact that real work pieces have limited 

shapes and geometry structures, it is hard to include enough 

variations. So in this paper we generate training data by 

simulation. 

We generate a large number of initial images with 

different object size, distance between objects, and 

locations, which is realized by randomly selecting several 

basic shapes of circles, squares, ovals and rectangles with different sizes to form an image with 

rotation and translation transform. And we use data reconstructed with projections collected at 

 
Fig.9 The final result of the network 
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several voltages to train the network, so the trained network can reduce artifact of images obtained 

at these voltages. In this paper the images are scanned at the voltage of 120 kV, 135 kV, and 

150 kV respectively with the circuit of 2 mA and copper is used as the simulation material. The 

slices are reconstructed by FBP method. Fig.10 shows the spectrum of 120 kV, 135 kV and 150 kV 

where the Y-axis denotes the number of photons at each energy, and the copper’s variation 

curve of attenuation coefficient A with energy E is shown in Fig.11.  
 

   
(a) Spectrum of 120 kV (b) Spectrum of 135 kV (c) Spectrum of 150 kV 

Fig.10 The energy spectrums of three voltages 
 

  

Fig.11 Variation curve of copper attenuation 
coefficient with energy 

Fig.12 Some input images to train the network 

 

In this paper, images with size of 512 ×512 are scanned by parallel-beam geometry. 720 

projections are uniformly sampled over 180 degrees while the 1D detector contains 768 bins. The 

slices reconstructed from polychromatic projections by FBP algorithm will show beam hardening 

artifacts. The slices with artifacts are used as the input of network and those reconstructed with 

monochromatic projections at a fixed energy are the output. Here the fixed energy is set to 74keV. 

400 images are generated at each voltage, 370 of which are the training data and the rest 30 are 

for testing. Hence there are 1110 images for training and 90 images for testing with three voltages 

in total. Some of the input images are shown in Fig.12. 

2.2 Results tested with simulated data 

The convolutional neural network proposed in this paper is trained under the open source 

framework of caffe
[26]

 running on a PC with NVIDIA GTX TITAN X graphics card. The initial 

weights of filters in each layer are randomly set, which satisfy the Gaussian distribution with zero 

mean and standard deviation 0.001. The loss is computed as the Euclidean distance between the 

artifact corrected image and ground truth (the artifact-free image). The loss function is optimized 

using the stochastic gradient descent method. The learning rate is 0.00001 and the training process 

takes roughly 18 hours. 

The trained network is tested with reconstructed images scanned at voltage of 120 kV, 
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135 kV, 150 kV respectively. Fig.13 to Fig.15 illustrate some testing results of the trained 

convolutional neural network. All the uncorrected images present severe beam hardening artifacts. 

The artifacts of images corrected with the proposed method in this paper are largely reduced. For 

example, we can see the streaking artifacts clearly in Fig.15(a), whereas these artifacts are 

removed in Fig.15(b), thus the edges look much sharper.  

 

   
(a) Original image reconstructed 

from polychromatic projections 
with FBP method 

(b) Artifact corrected image (c) Artifact-free image 

Fig.13 Testing results of 120 kV 

 

   
(a) Original image reconstructed 

from polychromatic projections 
with FBP method 

(b) Artifact corrected image (c) Artifact-free image 

Fig.14 Testing results of 135 kV 

 

   

(a) Original image reconstructed 
from  polychromatic projections 
with FBP method 

(b) Artifact corrected image (c) Artifact-free image 

Fig.15 Testing results of 150 kV 

 

The experimental results validate the effectiveness of the proposed method for beam 

hardening artifact reduction of the reconstructed slices. This is mainly because the beam 

hardening artifacts in images present some characteristics, and the network trained with a 

large number of data can learn the relationship between images with artifacts and the 

corresponding artifact-free images. Then beam hardening artifacts can be suppressed. 
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Simultaneously, the testing results demonstrate that the proposed method can reduce the 

artifacts of images scanned at several different voltages. 

2.3 Results testing with real data 

To validate the effectiveness of our method for real data, several copper cylinders are used. 

The reason why we select copper is that beam hardening artifacts in reconstructed slices of copper 

is quite severe and the correction of artifacts in copper slices is very necessary. In this paper, we 

correct the slices reconstructed by real CT system with the simulated trained network. In the 

experiment with real CT system, the work pieces to be scanned are a group of copper cylinders.  

 

 
Fig.16 The copper used in the 

real experiment 

Table 1 Parameters of scanning  

Parameters Value 

Voltages 100 kV, 120kV 

Distance between source and rotation axis 800.0 mm 

Distance between source and detector 1 080.0 mm 

Pixel size of detector 0.2 mm 

Resolution of detector 1 024 

Number of projections 360 
 

 

  
(a) Uncorrected image reconstructed 

by FBP method 
(b) Artifact corrected image with the 

proposed method 
Fig.17 Experimental results with real data at 120 kV 

 

  
(a) Uncorrected images reconstructed 

by FBP method 
(b) Artifact corrected images with the 

proposed method 
Fig.18 Experimental results with real data at 100 kV 

 

The diameters of the copper cylinders are 4mm, 5mm, 6mm and 8mm respectively. The 

copper cylinders used in this experiment are shown in Fig.16 and resolution of reconstructed slice 
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is 512 ×512 with pixel size of 0.1 105 mm ×0.1 105 mm.The parameters of fan-beam scanning are 

shown in table 1.  

The copper cylinders with diameters of 6 mm and 8mm are scanned at the voltage of 120 kV. 

Beam hardening artifacts of the slice are corrected by the simulated trained network. Fig.17 shows 

the experimental results using the proposed correction method. From Fig.17, we can see that the 

uncorrected image directly reconstructed by FBP displays severe artifacts including cupping 

artifacts and streaking artifacts. But the image corrected with the proposed method shows little 

cupping or streaking artifacts. The result preliminarily proves the effectiveness of the method 

proposed in this paper.  

To study the correction effect of the proposed method for images reconstructed with 

projections scanned at other voltage, we correct the slices scanned at 100 kV with the trained 

network. Fig.18  shows the uncorrected image and the corrected image respectively. We can 

see the artifacts of the image scanned at 100 kV are greatly reduced. This is because the 

trained network can learn the regularity of beam hardening artifacts and is able to reduce the 

image artifacts scanned at 100 kV to some extent. If the training data contain images 

reconstructed at enough spectrums, the trained network can work for artifact reduction of 

images at different spectrums. 

The experimental results in Fig.17 and Fig.18 illustrate the effectiveness of the proposed 

method for beam hardening artifact reduction and the method proposed in this paper can work for 

a relatively wide spectrum. 

3 Conclusion 

The beam hardening artifacts severely degrade the quality of images reconstructed by most 

exiting methods in practical X-ray CT reconstruction. In this study a convolutional neural network 

is proposed to suppress the beam hardening artifacts in reconstructed images. The network can 

learn the regularity of artifacts and give the images with little artifacts. 

The main limitation of our method is that the training process is time-consuming. This can be 

solved by the acceleration with high performance computing graphic cards or distributed 

computing systems. Besides, a large number of data should be generated to train the network. 

In conclusion, this paper proposes a method to suppress beam hardening artifacts based on 

convolutional neural network. The inputs of the network are slices reconstructed with 

polychromatic projection data by FBP algorithm. The artifact-free slices reconstructed at a fixed 

energy are the output of the network. The experimental results demonstrate the effectiveness of 

the proposed method. 
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工业 X 射线 CT 中基于深度学习的
射束硬化伪影抑制方法 

周丽平，孙怡，程凯，余建桥 

（大连理工大学信息与通信工程学院，辽宁 大连 116024） 

摘要：利用工业 CT 进行无损检测时，由于实际 X 射线源的宽能谱特性，目前现有的大部分重建算法得到

的图像含有射束硬化伪影。射束硬化伪影降低了图像的质量，影响了 CT 图像应用，如 CT 图像诊断等。本

文提出一种基于深度学习的减少硬化伪影的方法，用大量含有硬化伪影的断层图像作为输入，用相应的在

固定能量下重建的不含硬化伪影的图像作为输出来训练卷积神经网络。通过建立含有硬化伪影的断层图像

与不含硬化伪影的断层图像之间的映射关系，来抑制硬化伪影。实验结果证明了本文所提方法在降低 CT

图像硬化伪影上的有效性。 

关键词：射束硬化；计算机断层成像；深度学习；卷积神经网络 
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