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Abstract: The ultimate goal in improving computed tomography (CT) technology is to reconstruct 
higher quality images with lower radiation dose, which can help to lower cancer risks to the patients. 
Inspired by the compressive sensing (CS) theory, few-view reconstruction has been a hot topic for dose 
reduction in recent years. However, when the radiation dose is fixed, fewer view projections does not 
always imply higher image quality. Numerical tests are performed in this study to investigate the 
relationship between image quality and view numbers under a fixed radiation dose level. It is observed 
that for a fixed dose level, as the view number increases, the image quality increases but then 
decreases once the view number is sufficiently large. For the dose level and phantom we tested, the 
optimal view number for best reconstruction quality is around 300 in an equi-angular full scan 
configuration, which provides a useful hint for practical applications. 
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Computed tomography (CT) is a technology to create 2-D and 3-D images from the X-ray 

attenuation of the body from different angles. These images provide very important information 
for physicians to diagnose illnesses. In 2000, the number of CT scans was approximately 46 
million, in 2006, 62 million[1], and in 2009, the number of scans was above 70 million[2]. In 
particular, use of pediatric CT is rapidly growing. As CT is benefiting clinical diagnosis more and 
more often, radiation dose associated with diagnostic CT scans has become a major concern. 
X-ray radiation dose may induce genetic, cancerous, and other diseases. Moreover pediatric CT 
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has a potential of increased risk because developing children are much more sensitive to X-ray 
radiation. Reducing the risks of CT scans is one of the main bottlenecks to developing diagnostic 
radiology.  

The filtered back projection (FBP) algorithm is currently the most widely used 
reconstruction technique because it is very fast and robust. The image quality of FBP-type 
algorithms is acceptable in most cases. However, these algorithms produce images with a large 
amount of noise, substantial streak artifacts, and poor low-contrast detectability in low dose 
situation mainly due to the back projection process[3]. The FBP technique requires a substantial 
number of views to reconstruct a decent image for clinical diagnosis. However, complete 
projection data usually require higher radiation dose. 

Iterative reconstruction (IR) technique is used to overcome data insufficiency. Research has 
also been done to develop iterative algorithms based on algebraic reconstruction technique 
(ART)[4]. The simultaneous ART (SART)[5] works on the complete data and updates all the pixels 
to obtain a stable solution. The ordered subset version of SART (OS-SART)[6] and simultaneous 
iterative reconstruction technique (OS-SIRT)[7] divide the projection data into several groups and 
perform the update for each group instead of the complete projection data. Because the IR 
algorithms account for noise in the data model and use prior information, they outperform 
analytical approaches when the data is sparse, incomplete, and/or noisy and allow for high quality 
image reconstructions with reduced radiation dose. The IR works by allowing for multiple 
volumes to be obtained at once. This also means that IR algorithms are generally more 
computationally intensive[8] than the analytical counterparts. Therefore the IR methods are 
considered to be the best technique in reducing patient dose in practical applications including 
pediatric CT imaging. The main concern with IR methods is its demanding for more computation 
capacity because of multiple iterations. With the advance in computation facilities in the past 
decade, the IR is attracting more and more attention from CT researchers and manufacturers. 

Recently the application of compressive sensing (CS) has become popular in signal and 
image processing. The CS theory shows that a high-quality signal or image can be reconstructed 
from far fewer measurements than what is usually required by the Nyquist sampling theorem[9-11]. 
The main idea of CS is that most signals or images have sparse representations in a transform 
domain, thus a very limited amount of samples are taken in a much less correlated basis and then 
the signal is recovered with an overwhelming probability from these data via l1 minimization. 
Most CT images can be regarded as piece-wise constant function because the X-ray attenuation 
coefficient varies slightly within an anatomical component and largely around the borders of 
tissue structures. Therefore, the discrete gradient transform of a CT image is sparse. Inspired by 
the CS theory, a new CT reconstruction approach, referred to as total variation (TV, the l1 norm of 
the discrete gradient transform) minimization was developed[12-15]. With the CS theory and TV 
method, it has attracted researchers to reconstruct higher quality images from fewer view 
projections for dose reduction.  

In summary, reducing radiation exposure in CT is one of the ultimate goals of scientists 
seeking algorithms for high-quality image reconstruction. However, the process of improving the 
technology to reduce dose presents a dilemma because with lower dose the image quality declines. 
Recently, the CS-based few view reconstruction has become an increasingly popular topic. Thus 
some interesting questions arise. Does a smaller view number mean a better image quality for a 
fixed dose level? What is the optimal view number to achieve the best image quality? The purpose 
of this paper is to try to figure out answers to these questions.  More specifically, we try to find 
the most optimal view number with best reconstruction quality for a fixed radiation dose level. 
The rest of the paper is organized as follow. In Section 2, we describe the model, projection with 
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noise, and reconstruction algorithm. Experimental results are presented in Section 3, and 
conclusions and discussions are presented in Section 4. 

1  Method 

1.1  CT System Model 

In the CT reconstruction field, a two-dimensional (2D) image f of size N1-by-N2 usually is 
rearranged as a one-dimensional (1D) vector x of length 1 2= N N N  with X-ray attenuation 

coefficients at each pixel position. The model for IR technique in CT can be represented by  

Ax = b                                    (1) 

where b represents a projection data as a 1D vector of length M and A is an M-by-N system 
matrix determined by the projection model and scanning geometry[16]. The goal of CT 
reconstruction is to solve problem (1) for  x.  

1.2  Projection Noise Model 

The CT transmission data noise arises mainly from X-ray quanta noise and system electronic 
noise. The transmission data can be expressed as[17],  

2
1 poisson( ) Normal( , )  I m                        (2) 

where the parameter λ is the expectation of the numbers of X-ray photons having traversed the 
patient. The second term in (2) is the normal distribution of the electronic noise with mean m  and 
variance σ2. In practice,  m  is often calibrated to be zero. According to the Lambert-Beer’s law, the 
projection integral p  can be approximately defined as the negative logarithm of the ratio between 
the outgoing and incoming number of photons,  
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The expectation λ in (2) can be expressed as,  

0 exp( )I p                                   (4) 

where p  is the expectation of p . 

In this work, a monochromatic X-ray is assumed. A noise-free linear-integral measurement 
p  is computed using a given image phantom in an equiangular fan beam geometry. For a given 

I0, the transmission data I1 can be simulated using (2) and (4). Finally, the noisy data p  is 
calculated using (3) and the projection noise   

n p p                                    (5) 

It should be pointed out that the above process is used to generate one measurement at one 
detector cell and one view angle, which can be viewed as one component of b in Eq.(1). The 
parameter I0 in (3) is proportional to the X-ray photon intensity prior to arrival at the body. 

According to the table III and the relationship 
0

1

I
   in[17], we can establish a relationship 
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between I0 and mAs level for a fixed view number (the correspondence between I0 and mAs is 
given in Section 3), hence the dose level. Because the dose level is proportional to the product of 
I0 and view number for a scanning geometry and detector configuration, this product is used to 
represent a measurement of dose level in this work. 

1.3  Reconstruction Method 

Suppose that xk is the current approximation to a solution of system (1) after k iterations. The 
SART-type solution to system (1) can be written as[6],  
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where ,i ka x  is the inner product of the thi row ai of A and xk, ija  is the thj entry of the row 

ai, (0, 2)k   is the relaxation parameter, and the index i  is cyclically taken as 1, 2, ….  

The OS-SART technique divides projection data into several sets. In each iteration, the 
SART algorithm is applied to each individual subset, and the intermediate reconstructed image is 
used as the input to the next subset reconstruction until passing through all of the subsets. Inspired 
by the CS theory, the TV minimization method is adopted to reconstruct the image f  by solving 
the following optimization problem[18],  

min TV( f ) subject to Ax = b,                         (7) 

where 
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In this paper, we employ the classical alternative minimization method to minimize Eq.(7). 
While the SART or OS-SART is used to minimize the data discrepancy to satisfy the projection 
constraint Ax = b in the first step, the steepest descent search method is used to minimize the 
TV[13]. 

2  Experimental Results 

To investigate the relationship between the image quality and the view numbers for a fixed 
radiation dose, numerical tests were performed on different dose levels and view numbers in 
MatLab. A 512 × 512 image of a patient’s chest was selected as a digital image phantom. Typical 
fan beam geometry with a circular scanning locus was used. The radius of the field of view was 
25.0 cm. The detector array contains 888 elements. The distance between the source and object is 
53.852 cm and object to detector is 49.83 cm. For each of the selected photon number and view 
number over a full scan range, we first acquired the projection dataset with noise as explained in 
section 2.2. The parameters for the electronic noise are m = 0 and σ2 = 10[17]. Then we 
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reconstructed the images using OS-SART with TV minimization algorithm. The parameter λk in 
the OS-SART iteration was set to be a constant 1.0, and the maximum number of iterations 
performed was calculated by (40 000/view number).  

In our experiments, the numbers of views Nvigw were taken 10, 20, 30, 40, 50, 80, 110, 160, 
210, 290, 400, 570, 790, 1 110, and 1 550; the total number of photons K (the product of the view 
number and I0) was taken as 4 different values of 5 × 106, 107, 2 × 107 and 5 × 107. Because K is 
proportional to the dose level, here we will use K to indicate the radiation dose level. Based on the 
datasets in Table III in[17], a linear relationship between the total number of K and the dose level 
was fitted as K=1.084 × 106d, where d is the dose level (mAs). For illustration, the values of 
photons, I0 and mAs level for the cases of view numbers = 50, 290, and 1 550 are shown in Table 
1. Figure 1 shows the cardiac region of the reconstructed images for different cases. It should be 
pointed out that we did not consider the bowtie filter in our simulations.  
 

Table 1  The dose level and I0 for different simulation cases 

Nview 
K = 5 e6 

4.61 mAs 

K = 1 e7 

9.22 mAs 

K = 2 e7 

18.45 mAs 

K = 5 e7 

46.13 mAs 

50 1.0 e5 2.0 e5 4.0 e5 1.0 e6 

290 1.7 e4 3.4 e4 6.9 e4 1.7 e5 

1 550 0.3 e4 0.6 e4 1.3 e4 3.2 e4 

 

 

 

 

Fig.1  The cardiac region of the reconstructed images with different dose and view numbers. From left 
to right, the dose levels are 4.61 mAs, 9.22 mAs, 18.45 mAs and 46.13 mAs, respectively. 
From top to bottom, the view numbers are 50, 290 and 1 550, respectively. While the maximum 
HU number is mapped to white, the minimum HU number is mapped to black 
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Each reconstructed image 
1 2N NF   was compared with the original image 

1 2N Nf   using the 

root mean squared error.  
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Figure 2 shows the RMSE comparison of the reconstructed images with different dose levels 
and views. For a fixed dose level, as the number of views increases, RMSE drops to a certain 
point but then rises up, which indicates that the image quality changes towards good but then 
towards bad again. This is because larger view number brings more information but more noise 
while smaller view number brings less noise but less information. Meanwhile, electronic noise 
will compromise the image quality when I0 becomes smaller with the increase of the view number. 
Hence, there is a trade-off between the view number and noise. We also compared the qualities of 
the images using the structural similarity index (SSIM)[19], which is a non-unit value between 0 
and 1. With the original phantom image as reference, the greater the SSIM, the better the image 
quality. Figure 3 shows the SSIM comparison of the same settings as in Figure 2. It shows a 
similar trend to RMSE. Note that the log in Figures 2 and 3 is natural logarithm.  
 

Fig.2  RMSE vs. view numbers Fig. 3 SSIM vs. view numbers 
 

From the experimental results, for different dose level K, it is observed that, for a fixed view 
number, larger K gives lower RMSE and higher SSIM, thus better image quality. As K increases, 
the minimum RMSE and the maximum SSIM increase as well, which implies the capacity of 
image quality is better. This is consistent with our common sense in the CT community. More 
interestingly and importantly, the best image quality was attained at around 300-400 views for 
different dose level we have tested. Views less than this range will result in lack of information 
even though the noise is less; on the other hand, views more than that will bring too much noise to 
compromise the additional measurements. For the case of 5 × 107 photons, the image quality does 
not show decay before 1 550 views. This can be explained by the relationship between higher 
photon number and Poisson noise. the higher the photon the number K, the smaller the Poisson 
noise will be, which yield a smaller total noise given the fact that the electronic noise is fixed.  

3  Discussion and Conclusion 

Reducing the number of views is important to lower radiation dose; however, the view numbers 
can only be reduced by so much before it begins to affect the image quality and thus undermining 
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the purpose of the CT scan. For a fixed dose level, fewer view number may imply inferior image 
quality. Therefore, there is a trade-off between view number and the image quality for a fixed dose 
level. General speaking, larger view number brings more information but more noise while smaller 
view number brings less noise but less information. It is necessary to investigate the direct 
relationship between the image quality and view number for a fixed dose level.  

In this work, we have performed several preliminary numerical tests to compare the image 
qualities with different dose level and view numbers. It is observed that for a fixed dose level, as 
the view number increases, the image quality increases but then decreases. For the cases we tested, 
the optimal view number for best image quality is around 300. For a given sparse transform, it 
should be pointed out that the optimal view number definitely depend on the image contents (e.g. 
unknown variables in the reconstructed images), as well as detector resolution (e.g. the detector 
cell number). Therefore, the optimal view number 300 is only suitable for the tested image in this 
paper, and it cannot be directly applied to other applications. Nevertheless, the reported results 
should provide a useful hint for clinical applications given the fact the image phantom is a 
representative cardiac image.  
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摘要：改进 CT 技术的最终目标是用较低的辐射剂量重建出更高质量的图像以降低患癌症的风险。近年来

受压缩感知理论的启发，减少投影角度重建一直是减少辐射量的一个热门课题。但是，当辐射剂量固定，

减少投影角度并不总是意味着更好的图像质量。本文研究固定辐射剂量下图像质量和扫描角度数目的关

系。数值实验表明对于固定的辐射剂量，起初图像质量随着扫描角度数目的增加而提高，但是当扫描角度

数目足够大之后图像质量反而下降了。在等角全扫描模式下，对于我们测试的辐射剂量和图像，产生最佳

图像质量的最佳扫描角度数目是 300，这对于实际的应用具有借鉴意义. 
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