ISSN 1004-4140
CN 11-3017/P
Volume 31 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
ZHANG Y, QIN D W, HUANG J. Application of lame parameter direct inversion in hydrocarbon detection of low-porosity and low-permeability reservoirs in N structure in East China Sea basin[J]. CT Theory and Applications, 2022, 31(3): 305-316. DOI: 10.15953/j.ctta.2021.088. (in Chinese)
Citation: ZHANG Y, QIN D W, HUANG J. Application of lame parameter direct inversion in hydrocarbon detection of low-porosity and low-permeability reservoirs in N structure in East China Sea basin[J]. CT Theory and Applications, 2022, 31(3): 305-316. DOI: 10.15953/j.ctta.2021.088. (in Chinese)

Application of Lame Parameter Direct Inversion in Hydrocarbon Detection of Low-porosity and Low-permeability Reservoirs in N Structure in East China Sea Basin

doi: 10.15953/j.ctta.2021.088
  • Received Date: 2022-02-25
  • Accepted Date: 2022-03-04
  • Available Online: 2022-03-15
  • Publish Date: 2022-05-23
  • The main target layer of the N structure in the East China Sea is a delta subaqueous distributary channel sand body developed under a strong hydrodynamic environment. The distribution of planar sand layer is discontinuous and the lateral heterogeneity is very strong. Under the influence of deep burial compaction and diagenesis, the reservoir is characterized by low porosity and low permeability, and the properties of rock-physics are overlapped seriously. In addition, the lack of large angle information of deep seismic data is a common problem. It is of great importance to implement the fluid distribution range of tight reservoir in the study area for the design and deployment of exploration and development. In this paper, a new method of deep seismic fluid description is introduced based on direct inversion of lame parameters. Through qualitative and quantitative analysis of rock-physics of measured well data, optimal highly sensitive hydrocarbon detection factor is selected. Furthermore, the AVO properties of Lambda parameters are extracted from the pre-stack trace set by combining with the parametric equations of the two AVO models of Lambda parameters. Then, the AVO properties are directly transformed into the interlayer elastic information by using the colored inversion technique. Finally, the seismic fluid sensitive elastic data is obtained to guide the seismic fluid description. The practical application shows that the hydrocarbon detection results of this method are compatible with the logging interpretation achievement, and can effectively describe the low-porosity and low-permeability reservoirs fluid development law of the study area, and can provide important technical support for the discovery of oil and gas resources in new fields.


  • loading
  • [1]
    张世鑫. 基于地震信息的流体识别方法研究与应用[D]. 青岛: 中国石油大学(华东), 2012.

    ZHANG S X. Methodology and application of fluid identification with seismic information[D]. Qingdao: China University of Petroleum (East China), 2012. (in Chinese).
    印兴耀, 宗兆云, 吴国忱. 岩石物理驱动下的地震流体识别研究[J]. 中国科学:地球科学, 2015,58(1): 159−171.

    YIN X Y, ZONG Z Y, WU G C. Research on seismic fluid identification driven by rock-physics[J]. Science China: Earth Sciences, 2015, 58(1): 159−171. (in Chinese).
    印兴耀, 曹丹平, 王保丽, 等. 基于叠前地震反演的流体识别方法研究进展[J]. 石油地球物理勘探, 2014,49(1): 22−34.

    YIN X Y, CAO D P, WANG B L, et al. Research progress on fluid discrimination with pre-stack seismic inversion[J]. Oil Geophysical Prospecting, 2014, 49(1): 22−34. (in Chinese).
    OSTRANDER W J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence[C]//SEG Annual Meeting Expanded Abstracts, 1982: 216-218.
    CHIBURIS E F. Analysis of amplitude versus offset to detected gas/oil contacts in the Arabian Gulf[C]//SEG Annual Meeting Expanded Abstracts, 1984: 669-670.
    SMITH G C, GIDLOW P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35(9): 993−1014. doi: 10.1111/j.1365-2478.1987.tb00856.x
    GIDLOW P M, SMITH G C, VAIL P J. Hydrocarbon detection using fluid factor traces, a case study: How useful is AVO analysis?[C]//Technical Program and Abstracts, 1992: 78-89.
    FATTI J L, SMITH G C, VAIL P J, et al. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the geo-stack technique[J]. Geophysics, 1994, 59(9): 1362−1276. doi: 10.1190/1.1443695
    WALLACE R, YOUNG R. Pre-stack inversion: Evolving the science of inversion[C]//SEG Annual Meeting Expanded Abstracts, 1996: 12-23.
    SMITH G C, GIDLOW P M. The fluid factor angle[C]//EAGE 65 th Conference & Exhibition, 2003: 2-5.
    GOODWAY B, CHEN T, DOWNTON J. Improved AVO fluid detection and lithology discrimination using Lame petro-physical parameters[C]//SEG Technical Program Expanded Abstracts, 1997, 16: 183-186.
    GOODWAY B. AVO and lame constants for rock parameterization and fluid detection[C]//CSEG Recorder December. 2001: 39-60.
    HELDLIN K. Pore space modulus and extraction using AVO[C]//SEG Annual Meeting Expanded Abstracts, 2000, 19: 170-173.
    BATZLE M L. Optimal hydrocarbon indicators[C]//SEG Annual Meeting Expanded Abstracts, 2001, 20: 1697-1700.
    RUSSELL B H, HEDLIN K, HILTERMAN F J, et al. Fluid-property discrimination with AVO: A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1): 29−39. doi: 10.1190/1.1543192
    RUSSELL B H, GRAY D, HAMPSON D P, et al. Linearized AVO and poroelasticity[J]. Geophysics, 2011, 76(1): C19−C29.
    李英, 秦德海. 基于流体替代的敏感弹性参数优选级流体识别在渤海B油田的应用[J]. 物探与化探, 2018,42(4): 662−667.

    LI Y, QIN D H. The optimization of sensitive elastic parameters based on fluid substitution and the application of fluid identification to Bohai B oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(4): 662−667. (in Chinese).
    苏世龙, 贺振华, 王九栓, 等. 利用叠前弹性参数同时反演预测储层的含油气性[J]. 物探与化探, 2013,37(6): 1008−1013.

    SU S L, HE Z H, WANG J S, et al. The application of pre-stack simultaneous inversion to prognosis of gas and oil potential in the reservoir[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1008−1013. (in Chinese).
    王保丽, 印兴耀, 张繁昌. 基于Gray近似的弹性阻抗方程及反演[J]. 石油地球物理勘探, 2007,42(4): 435−439. doi: 10.3321/j.issn:1000-7210.2007.04.014

    WANG B L, YIN X Y, ZHANG F C. Gray approximation based elastic wave impedance equation and inversion[J]. Oil Geophysical Prospecting, 2007, 42(4): 435−439. (in Chinese). doi: 10.3321/j.issn:1000-7210.2007.04.014
    宗兆云, 印兴耀, 吴国忱. 基于叠前地震纵横波模量直接反演的流体检测方法[J]. 地球物理学报, 2012,55(1): 284−292. doi: 10.6038/j.issn.0001-5733.2012.01.028

    ZONG Z Y, YIN X Y, WU G C. Fluid identification method based on compressional and shear modulus direct inversion[J]. Chinese Journal of Geophysics, 2012, 55(1): 284−292. (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.01.028
    印兴耀, 张世鑫, 张峰. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究[J]. 地球物理学报, 2013,56(7): 2378−2390. doi: 10.6038/cjg20130724

    YIN X Y, ZHANG S X, ZHANG F. Two-term elastic impedance inversion and Russell fluid direct estimation method for deep reservoir fluid identification[J]. Chinese Journal of Geophysics, 2013, 56(7): 2378−2390. (in Chinese). doi: 10.6038/cjg20130724
    杨培杰, 董兆丽, 刘昌毅, 等. 敏感流体因子定量分析与直接提取[J]. 石油地球物理勘探, 2016,51(1): 158−164.

    YANG P J, DONG Z L, LIU C Y, et al. Quantitative analysis and direct extraction of sensitive fluid factors[J]. Oil Geophgsical Prospecting, 2016, 51(1): 158−164. (in Chinese).
    邓炜, 印兴耀, 宗兆云, 等. 效流体体积模量直接反演的流体识别方法[J]. 石油地球物理勘探, 2017,52(2): 315−325.

    DENG W, YIN X Y, ZONG Z Y, et al. Fluid identification based on direct inversion of equivalent fluid bulk modulus[J]. Oil Geophgsical Prospecting, 2017, 52(2): 315−325. (in Chinese).
    贾凌云, 李琳, 王千遥, 等. 基于广义弹性阻抗的流体因子反演方法研究与应用[J]. 石油物探, 2018,57(2): 302−311. doi: 10.3969/j.issn.1000-1441.2018.02.016

    JIA L Y, LI L, WANG Q Y, et al. Fluid identification factor inversion based on generalized elastic impedance[J]. Geophysical Prospecting for Petroleum, 2018, 57(2): 302−311. (in Chinese). doi: 10.3969/j.issn.1000-1441.2018.02.016
    周家雄, 马光克, 隋波, 等. 储层参数岩石物理反演在“甜点”储层预测中应用研究—以W17油田为例[J]. 地球物理学进展, 2019,34(3): 1159−1169. doi: 10.6038/pg2019CC0166

    ZHOU J X, MA G K, SUI B, et al. Application of reservoir parameters rock physics inversion in the prediction of “Sweet spot”: A case study in W17 oilfield[J]. Progress in Geophysics, 2019, 34(3): 1159−1169. (in Chinese). doi: 10.6038/pg2019CC0166
    周林, 廖建平, 李景叶, 等. 基于精确Zoeppritz方程的储层含油气性预测方法[J]. 地球物理学报, 2021,64(10): 3788−3806. doi: 10.6038/cjg2021P0099

    ZHOU L, LIAO J P, LI J Y, et al. Predction method of reservoir oil-gas potential based on exact Zoeppritz equations[J]. Chinese Journal of Geopgysics, 2021, 64(10): 3788−3806. (in Chinese). doi: 10.6038/cjg2021P0099
    MA Z Q, Yin X Y, ZONG Z Y, et al. Azimuthally variation of elastic impedances for fracture weakness[J]. Journal of Petroleum Science and Engineering, 2019, 5(63): 181−187.
    PAN X P, LI L, ZHANG G Z, et al. Elastic-impedance-based fluid/porosity term and fracture weakness inversion in transversely isotropic media with a tilted axis of symmetry[J]. Geofluids, 2020, 86(1): C1−C18.
    刘力辉, 陈珊, 倪长宽. 叠前有色反演技术在地震岩性学研究中的应用[J]. 石油物探, 2013,52(2): 171−176. doi: 10.3969/j.issn.1000-1441.2013.02.009

    LIU L H, CHEN S, NI C K. Application of pre-stack color inversion in seismic lithology[J]. Geophysical Prospecting for Petroleum, 2013, 52(2): 171−176. (in Chinese). doi: 10.3969/j.issn.1000-1441.2013.02.009
    李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014,38(5): 970−975.

    LI H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5): 970−975. (in Chinese).
    刘晓晶, 印兴耀, 吴国忱, 等. 基于基追踪弹性阻抗反演的深部储层流体识别方法[J]. 地球物理学报, 2016,59(1): 277−286. doi: 10.6038/cjg20160123

    LIU X J, YIN X Y, WU G C, et al. Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance[J]. Chinese Journal of Geophysics, 2016, 59(1): 277−286. (in Chinese). doi: 10.6038/cjg20160123
    毕俊凤, 杨培杰. 有色反演技术在少井区岩性体预测中的应用[J]. 物探与化探, 2014,38(3): 558−565.

    BI J F, YANG P J. The application of colored inversion to reservoir prediction in sparse well zone[J]. Geophysical and Geochemical Exploration, 2014, 38(3): 558−565. (in Chinese).
    秦德海, 李德郁, 蔡纪琰, 等. 扩展弹性阻抗在低孔、低渗砂砾岩储层物性预测中的应用[J]. 地球物理学进展, 2018,33(5): 2148−2152. doi: 10.6038/pg2018BB0390

    QIN D H, LI D Y, CAI J Y, et al. Application of extended elastic impedance for physical prediction of low porosity and low permeability glutenite reservoirs[J]. Progress in Geophysics, 2018, 33(5): 2148−2152. (in Chinese). doi: 10.6038/pg2018BB0390
    宗兆云, 孙乾浩, 陈维涛, 等. 惠西南地区储层含油气性叠前地震固液解耦识别[J]. 中国海上油气, 2020,32(4): 56−64.

    ZONG Z Y, SUN Q H, CHEN W T, et al. Pre-stack seismic solid-liquid decoupling identification for oil-gas reservoirs in southwestern Huizhou area[J]. China Offshore Oil and Gas, 2020, 32(4): 56−64. (in Chinese).
    DILLON L, SCHWEDERSKY G, VASQUEZ G, et al. A multi-scale DHI elastic attributes evaluation[J]. The Leading Edge, 2003, 22(10): 1024−1029. doi: 10.1190/1.1623644
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(652) PDF Downloads(65) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint