ISSN 1004-4140
CN 11-3017/P
Volume 31 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
LI G H, WANG S L, ZHANG W B, et al. Combined boundary of CPML and feature analysis within frequency-space domain[J]. CT Theory and Applications, 2022, 31(3): 269-279. DOI: 10.15953/j.ctta.2021.075. (in Chinese)
Citation: LI G H, WANG S L, ZHANG W B, et al. Combined boundary of CPML and feature analysis within frequency-space domain[J]. CT Theory and Applications, 2022, 31(3): 269-279. DOI: 10.15953/j.ctta.2021.075. (in Chinese)

Combined Boundary of CPML and Feature Analysis within Frequency-Space Domain

doi: 10.15953/j.ctta.2021.075
  • Received Date: 2021-12-21
  • Accepted Date: 2022-01-17
  • Available Online: 2022-01-28
  • Publish Date: 2022-05-23
  • In the process of numerical simulation, boundary reflection is an important factor which affect the numerical simulation results. The actual underground medium holds anisotropic characteristics. The traditional perfectly matched layer boundary (PML) shows good effect on small incident angle seismic waves, yet it can not effectively absorb low-frequency waves and large angle incident waves. To solve the problem of boundary reflection, in this paper, we propose a combined boundary condition using convolution perfectly matched layer (CPML) and eigenvalue analysis method to be applied in the numerical simulation of finite difference method in frequency space domain. The numerical simulation experiment and boundary reflection absorption effect analysis of the combined boundary condition verify that the proposed method is a reliable artificial absorption boundary condition, which can effectively suppress the boundary reflection generated in the process of wave field simulation.


  • loading
  • [1]
    戚艳平. 三维VTI介质qP波正演方法研究[D]. 东营: 中国石油大学(华东), 2008.

    QI Y P. The Study on qP wave forward modeling methods in 3D VTI media[D]. Dongying: China University of Petroleum (East China), 2008. (in Chinese).
    BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185−200. doi: 10.1006/jcph.1994.1159
    BERENGER J P. Application of the CFS-PML to the absorption of evanescent waves in waveguides[J]. IEEE Microwave and Wireless Components Letters, 2002, 12(6): 218−220. doi: 10.1109/LMWC.2002.1010000
    BERENGER J P. Numerical reflection from FDTD-PMLs: A comparison of the split PML with the unsplit and CFS PMLs[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3): 258−265. doi: 10.1109/8.999615
    罗玉钦, 刘财. 近似完全匹配层边界条件吸收效果分析及衰减函数的改进[J]. 石油地球物理勘探, 2018,53(5): 903−913,879. DOI: 10.13810/j.cnki.issn.1000-7210.2018.05.003.

    LUO Y Q, LIU C. Absorption effects in nearly perfectly matched layers and damping factor improvement[J]. Oil Geophysical Prospecting, 2018, 53(5): 903−913,879. DOI: 10.13810/j.cnki.issn.1000-7210.2018.05.003. (in Chinese).
    李青阳, 吴国忱, 梁展源. 基于PML边界的时间高阶伪谱法弹性波场模拟[J]. 地球物理学进展, 2018,33(1): 228−235.

    LI Q Y, WU G C, LIANG Z Y. Time domain high-order pseudo spectral method based on PML boundary for elastic wavefield simulation[J]. Progress in Geophysics, 2018, 33(1): 228−235. (in Chinese).
    谢志南, 郑永路, 章旭斌, 等. 弱形式时域完美匹配层—滞弹性近场波动数值模拟[J]. 地球物理学报, 2019,62(8): 3140−3154.

    XIE Z N, ZHENG Y L, ZHANG X B, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain[J]. Chinese Journal of Geophysics, 2019, 62(8): 3140−3154. (in Chinese).
    张衡, 刘洪, 李博, 等. VTI介质声波方程非分裂式PML吸收边界条件研究[J]. 石油物探, 2016,55(6): 781−792.

    ZHANG H, LIU H, LI B, et al. The research on unsplit PML absorbing boundary conditions of acoustic equation for VTl media[J]. Geophysical Prospecting for Petroleum, 2016, 55(6): 781−792. (in Chinese).
    马锐, 邹志辉, 芮拥军,等. 基于SPML和海绵边界的伪谱法弹性波模拟复合吸收边界条件[J]. 石油物探, 2018,57(1): 94−103.

    MA R, ZOU Z H, RUI Y J, et al. A composite absorbing boundary based on the SPML and sponge absorbing boundary for pseudo-spectral elastic wave modeling[J]. Geophysical Prospecting for Petroleum, 2018, 57(1): 94−103. (in Chinese).
    CHEW W C, LIU Q H. Perfectly matched layers for elastodynamics: A new absorbing boundary condition[J]. Journal of Computational Acoustics, 1996, 4(4): 341−359. doi: 10.1142/S0218396X96000118
    WANG T L, TANG X M. Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach[J]. Geophysics, 2003, 68(5): 1749−1755. doi: 10.1190/1.1620648
    方修政, 钮凤林. 二阶声波方程非分裂式CPML实施新方法[J]. 中国科学: 地球科学, 2021,51(8): 1341−1354. doi: 10.1360/SSTe-2021-0012

    FANG X Z, NIU F L. A new implementation method of non splitting CPML for second-order acoustic equation[J]. Scientia Sinica Terrae, 2021, 51(8): 1341−1354. (in Chinese). doi: 10.1360/SSTe-2021-0012
    KUZUOGLU M, MITTRA R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[J]. IEEE Microwave and Wireless Components Letters, 1996, 6(12): 447−449.
    RODEN J A, GEDNEY S D. Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media[J]. Microwave and Optical Technology Letters, 2000, 27(5): 334−339. doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
    DROSSAERT F H, GIANNOPOULOS A. A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves[J]. Geophysics, 2007, 72(2): T9−T17. doi: 10.1190/1.2424888
    DROSSAERT F H, GIANNOPOULOS A. Complex frequency shifted convolution PML for FDTD modelling of elastic waves[J]. Wave Motion, 2007, 44(7): 593−604.
    CHEN H M, ZHOU H, LI Y Q. Application of unsplit convolutional perfectly matched layer for scalar arbitrarily wide-angle wave equation[J]. Geophysics, 2014, 79(6): T313−T321. doi: 10.1190/geo2014-0103.1
    MA X, YANG D H, HUANG X Y, et al. Nonsplit complex-frequency shifted perfectly matched layer combined with symplectic methods for solving second-order seismic wave equations — Part 1: Method[J]. Geophysics, 2018, 83(6): T301−T311. doi: 10.1190/geo2017-0603.1
    MA X, YANG D H, HE X J, et al. Nonsplit complex-frequency-shifted perfectly matched layer combined with symplectic methods for solving second-order seismic wave equations — Part 2: Wavefield simulations[J]. Geophysics, 2019: T167−T179.
    MA X, LI Y J, SONG J X. A stable auxiliary differential equation perfectly matched layer condition combined with low-dispersive symplectic methods for solving second-order elastic wave equations[J]. Geophysics, 2019: T193−T206.
    吴国忱, 梁锴. VTI介质准P波频率空间域组合边界条件研究[J]. 石油物探, 2005,44(4): 301−307, 15.

    WU G C, LIANG K. Combined boundary conditions of quasi-P wave within frequency-space domin in VTI media[J]. Geophysical Prospecting for Petroleum, 2005, 44(4): 301−307, 15. (in Chinese).
    吴国忱. 各向异性介质地震波传播和成像[M]. 东营: 中国石油大学出版社, 2006.

    WU G C. Seismic wave propagation and imaging in anisotropic media[M]. Dongying: China University of Petroleum Press, 2006. (in Chinese).
    董良国. 地震波数值模拟与反演中的几个关键问题研究[D]. 上海: 同济大学, 2003.

    DONG L G. Research on several key problems in seismic wave numerical simulation and inversion[D]. Shanghai: Tongji University, 2003. (in Chinese).
    李桂花, 林年添, 杨思通, 等. 井间地震高分辨率数值模拟方法及波场特征研究[M]. 徐州: 中国矿业大学出版社, 2017.

    LI G H, LIN N T, YANG S T, et al. Study on high resolution numerical simulation method and wave field characteristics of crosswell seismic[M]. Xuzhou: China University of mining and Technology Press, 2017. (in Chinese).
    张奎涛, 顾汉明, 刘少勇, 等. 基于CPML-RML组合边界条件粘弹TTI介质旋转交错网格有限差分正演模拟[J]. 石油物探, 2019,58(2): 187−198, 218.

    ZHANG K T, GU H M, LIU S Y, et al. Rotated staggered grid finite difference forward modeling for wave propagation in viscoelastic TTI media based on CPML-RML combined boundary condition[J]. Geophysical Prospecting for Petroleum, 2019, 58(2): 187−198, 218. (in Chinese).
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article Views(174) PDF Downloads(43) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint