ISSN 1004-4140
CN 11-3017/P

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高紧支性移动最小二乘法的骨密度能谱探测技术研究

刘萍 黎淼 张彦琦 牟晓霜 张尤峰 席守智 张保强

刘萍, 黎淼, 张彦琦, 牟晓霜, 张尤峰, 席守智, 张保强. 基于高紧支性移动最小二乘法的骨密度能谱探测技术研究[J]. CT理论与应用研究, 2021, 30(5): 555-565. doi: 10.15953/j.1004-4140.2021.30.05.03
引用本文: 刘萍, 黎淼, 张彦琦, 牟晓霜, 张尤峰, 席守智, 张保强. 基于高紧支性移动最小二乘法的骨密度能谱探测技术研究[J]. CT理论与应用研究, 2021, 30(5): 555-565. doi: 10.15953/j.1004-4140.2021.30.05.03
LIU Ping, LI Miao, ZHANG Yanqi, MOU Xiaoshuang, ZHANG Youfeng, XI Shouzhi, ZHANG Baoqiang. Research of Bone Mineral Density Energy Spectrum Detection Technology Based on High-compact Support Moving Least Square Method[J]. CT Theory and Applications, 2021, 30(5): 555-565. doi: 10.15953/j.1004-4140.2021.30.05.03
Citation: LIU Ping, LI Miao, ZHANG Yanqi, MOU Xiaoshuang, ZHANG Youfeng, XI Shouzhi, ZHANG Baoqiang. Research of Bone Mineral Density Energy Spectrum Detection Technology Based on High-compact Support Moving Least Square Method[J]. CT Theory and Applications, 2021, 30(5): 555-565. doi: 10.15953/j.1004-4140.2021.30.05.03

基于高紧支性移动最小二乘法的骨密度能谱探测技术研究

doi: 10.15953/j.1004-4140.2021.30.05.03
基金项目: 

国家自然科学基金(基于微虾眼阵列的CdZnTe面元像素辐射探测技术研究(61604028));凝固技术国家重点实验室(西北工业大学)开放课题(CdZnTe材料辐射能谱响应均匀性诊断及信号补偿技术研究(SKLSP201742))。

详细信息
    作者简介:

    刘萍,女,重庆邮电大学光电工程学院研究生,主要从事双能X射线骨密度仪研究与应用,E-mail:s190431033@stu.cqupt.edu.cn;黎淼*,重庆邮电大学光电工程学院副教授,主要从事半导体辐射探测技术、高分辨率高能辐射诊断技术、半导体核电子学、医学影像重建及校正等相关研究,E-mail:limiao@cqupt.edu.cn。

  • 中图分类号: O242;TH774

Research of Bone Mineral Density Energy Spectrum Detection Technology Based on High-compact Support Moving Least Square Method

  • 摘要: 双能X射线骨密度仪系统具有测量精度高、时间短、剂量低等独特优势,是目前X射线骨密度测定技术的“金标准”。本文采用半导体CdZnTe探测器模块搭建半导体光子计数骨密度能谱测量平台,针对CdZnTe半导体探测器信号特点,使用移动最小二乘算法进行不同材料高低能拟合校正。移动最小二乘算法通过权函数改变目标数据点周围节点对其影响程度,可以让数据点的拟合方向更具灵活性。研究分析移动最小二乘算法对双能X射线骨密度测量数值的数据处理流程,完成基于移动最小二乘高低能拟合校正算法的骨密度测量实验。实验结果表明,本文所设计实现的基于移动最小二乘算法的骨密度双能拟合技术在实际应用中能达到较好的拟合误差精度,其中探测器像素单元在高能条件下拟合平均误差为0.032%,低能条件下拟合平均误差为0.036%。进一步数据分析表明,边缘像素单元与中心像素单元在高低能条件下的拟合误差差异仅为0.012%和0.011%。该算法能够有效提高半导体光子计数探测器的骨密度测量精度,降低探测器边缘像素单元信号不均匀性差异带来的误差影响,对目前线阵或面阵光子计数半导体探测器像素差异对骨密度诊断的影响具有良好的改善作用。

     

  • [1] FOGELMAN I, BLAKE G M. Different approaches to bone densitometry[J]. Journal of Nuclear Medicine:Official Publication, Society of Nuclear Medicine, 2000, 41(12):2015-2025.
    [2] 李婵. 宽扇束双能X射线骨密度仪研究[D]. 北京:清华大学, 2014. LI C. Research on a wide fan-beam dual energy X-ray absorptiometry[D]. Beijing:Tsinghua University, 2014. (in Chinese).
    [3] 时旭. 应用于双能X射线骨密度仪数据采集与散射校正系统的研究[D]. 南京:东南大学,2018. SHI X. The study of data acquisition and scattering correction system for dual-energy X-ray absorptiometry[D]. Nanjing:Southeast University, 2018. (in Chinese).
    [4] 李婵, 李亮, 陈志强, 等. 双能X射线骨密度仪技术进展综述[J]. CT理论与应用研究, 2014, 23(5):717-730.

    LI C, LI L, CHEN Z Q, et al. Review of developments of the dual energy X-ray absorptiometry techniques[J]. CT Theory and Applications, 2014, 23(5):717-730. (in Chinese).
    [5] KEANE B E, SPIEGLER G, DAVIS R. Quantitative evaluation of bone mineral by a radiographic method[J]. British Journal of Radiology, 1959, 32(375):162.
    [6] GENANT H K, FAULKNER K G, GLÜER C C, et al. Bone densitometry:Current assessment[J]. Osteoporosis International, 1993, 3(S1):91-97.
    [7] KARANTANAS A H, KALEF-EZRA J A, GLAROS D C. Quantitative computed tomography for bone mineral measurement:Technical aspects, dosimetry, normal data and clinical applications[J]. British Journal of Radiology, 1991, 64(760):298.
    [8] 刘颖. 基于侧波的定量超声骨密度测量方法[D]. 上海:上海交通大学, 2008. LIU Y. Quantitative ultrasound bone density measurement method based on side wave[D]. Shanghai:Shanghai JiaoTong University, 2008. (in Chinese).
    [9] STEIGER P, BLOCK J E, STEIGER S, et al. Spinal bone mineral density measured with quantitative CT:Effect of region of interest, vertebral level, and technique[J]. Radiology, 1990, 175(2):537-543.
    [10] 陈新文, 杨坤涛. 基于CZT探测器的双能X线骨密度测量技术[J]. 光电工程, 2006, 33(11):65-68.

    CHEN X W, YANG K T. Measuring technique of dual energy X-ray bone density based on CZT detector[J]. Optoeletronic Engingeering, 2006, 33(11):819-825.
    [11] 郝佳, 张丽, 陈志强, 等. 多能谱X射线成像技术及其在CT中的应用[J]. CT理论与应用研究, 2011, 20(1):141-150.

    HAO J, ZHANG L, CHEN Z Q, et al. Multi-ennergy X-ray imaging technique and its application in computed tomography[J]. CT Theory and Applications, 2011, 20(1):141-150. (in Chinese).
    [12] 徐品, 陈奭, 袁刚, 等. 基于光子计数探测器的能谱CT的研究[J]. CT理论与应用研究, 2015, 24(6):819-825.

    DOI:10.15953/j.1004-4140.2015.24.06.07. XU P, CHEN S, YUAN G, et al. Study of spectral CT based on a photon counting detector[J]. CT Theory and Applications, 2015, 24(6):819-825. DOI:10.15953/j.1004-4140.2015.24.06.07. (in Chinese).
    [13] 闫秋娟. 基于光子计数探测器的CT系统构建与成像质量优化[D]. 西安:西安电子科技大学, 2020. YAN Q J. CT system construction and imaging quality optimization based on photon counting detector[D]. Xi'an:Xidian University, 2020. (in Chinese).
    [14] CARDINAL H N, FENSTER A. An accurate method for direct dual-energy calibration and decomposition[J]. Medical Physics, 1990, 17(3):327.
    [15] CARDINAL H N. Theoretical optimization of a split septaless xenon ionization detector for dual-energy chest radiography[J]. Medical Physics, 1988, 15(2):167.
    [16] 莫镜清, 徐品, 孙明山. 基于光子计数探测器的X射线双能骨密度仪投影分解算法[J]. 激光与光电子学进展, 2017, 54(10):230-238.

    MO J Q, XU P, SUN M S. Projective decomposition algorithms for X-ray dual-energy bone densitometer based on photon counting detectors[J]. Laser & Optoelectronics Progress, 2017, 54(10):230-238. (in Chinese).
    [17] ALAWNEH L M, PARK C J, JARADAT M K, et al. Burnup estimation for plate type fuel assembly of research reactors through the least square fitting method[J]. Annals of Nuclear Energy, 2014, 71:37-45.
    [18] SALKAUSKAS P L. Surfaces generated by moving least squares methods[J]. Mathematics of Computation, 1981, 37(155):141-158.
    [19] 曾清红, 卢德唐. 基于移动最小二乘法的曲线曲面拟合[J]. 工程图学学报, 2004, (1):84-89. ZENG Q H, LU D T. Curve and surface fitting based on moving least-squares methods[J]. Journal of Engineering Graphics, 2004

    , (1):84-89. (in Chinese).
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 网络出版日期:  2021-09-23

目录

    /

    返回文章
    返回